論文の概要: Topic-Based Watermarks for LLM-Generated Text
- arxiv url: http://arxiv.org/abs/2404.02138v3
- Date: Mon, 19 Aug 2024 17:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 03:08:08.936484
- Title: Topic-Based Watermarks for LLM-Generated Text
- Title(参考訳): LLMテキストのためのトピックベースの透かし
- Authors: Alexander Nemecek, Yuzhou Jiang, Erman Ayday,
- Abstract要約: 本稿では,大規模言語モデル(LLM)のためのトピックベースの新しい透かしアルゴリズムを提案する。
トピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
提案手法は,テキストトピックを99.99%の信頼度で分類する。
- 参考スコア(独自算出の注目度): 46.71493672772134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The indistinguishability of text generated by large language models (LLMs) from human-generated text poses significant challenges. Watermarking algorithms are potential solutions by embedding detectable signatures within LLM-generated outputs. However, current watermarking schemes lack robustness to a range of attacks such as text substitution or manipulation, undermining their reliability. This paper proposes a novel topic-based watermarking algorithm for LLMs, designed to enhance the robustness of watermarking in LLMs. Our approach leverages the topics extracted from input prompts or outputs of non-watermarked LLMs in the generation process of watermarked text. We dynamically utilize token lists on identified topics and adjust token sampling weights accordingly. By using these topic-specific token biases, we embed a topic-sensitive watermarking into the generated text. We outline the theoretical framework of our topic-based watermarking algorithm and discuss its potential advantages in various scenarios. Additionally, we explore a comprehensive range of attacks against watermarking algorithms, including discrete alterations, paraphrasing, and tokenizations. We demonstrate that our proposed watermarking scheme classifies various watermarked text topics with 99.99% confidence and outperforms existing algorithms in terms of z-score robustness and the feasibility of modeling text degradation by potential attackers, while considering the trade-offs between the benefits and losses of watermarking LLM-generated text.
- Abstract(参考訳): ヒト生成テキストから大言語モデル(LLM)が生成するテキストの不明瞭さは大きな課題である。
ウォーターマーキングアルゴリズムは、LLM生成出力に検出可能なシグネチャを埋め込むことによって、潜在的な解決策である。
しかし、現在の透かし方式は、テキスト置換や操作のような様々な攻撃に対して堅牢性に欠けており、信頼性を損なう。
本稿では, LLMにおける透かしの堅牢性を高めるために, LLMのためのトピックベースの新しい透かしアルゴリズムを提案する。
提案手法は,透かし付きテキストの生成過程において,非透かし付きLPMの入力プロンプトや出力から抽出したトピックを利用する。
特定トピックのトークンリストを動的に活用し,それに応じてトークンサンプリング重量を調整する。
これらのトピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
トピックベースの透かしアルゴリズムの理論的枠組みを概説し、様々なシナリオにおける潜在的な利点について論じる。
さらに、離散的な変更、パラフレーズ化、トークン化を含む、ウォーターマーキングアルゴリズムに対する包括的攻撃について検討する。
提案手法は,LLM生成テキストの利点と損失のトレードオフを考慮しつつ,zスコアの堅牢性と潜在的な攻撃者によるテキスト劣化のモデル化の実現可能性の観点から,既存のアルゴリズムよりも99.99%の信頼度で様々な透かしテキストトピックを分類する。
関連論文リスト
- SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models [1.7188280334580197]
SimMarkは、大規模な言語モデルの出力を、モデルの内部ログへのアクセスを必要とせずにトレース可能にする、ポストホックな透かしアルゴリズムである。
実験結果から,SimMark は LLM 生成コンテンツのロバストな透かしのための新しいベンチマークを作成した。
論文 参考訳(メタデータ) (2025-02-05T00:21:01Z) - BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks [19.689433249830465]
既存の透かし技術は、低い透かし強度と厳しい偽陽性要件に苦しむ。
ツールは生成されたテキストを正極と負極に分割し、追加の計算リソースを必要とせずに検出を強化する。
論文 参考訳(メタデータ) (2025-01-21T14:32:50Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
大きな言語モデル(LLM)の透かしは、著作権に対処し、AI生成したテキストを監視し、その誤用を防ぐことを約束している。
近年の研究では、多数のキーを用いた透かし手法は、攻撃の除去に影響を受けやすいことが示されている。
我々は,最先端のLLM透かしスキームに対する新たなグリーンリスト盗難攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-30T04:11:17Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
大規模言語モデルは、潜在的な誤報を伴う高品質な応答を生成する。
ウォーターマーキングは、テキストに隠れたマーカーを埋め込むことによって、この文脈において重要な意味を持つ。
ウォーターマーキングのための新しい多目的最適化(MOO)手法を提案する。
本手法は,検出性と意味的整合性を同時に達成する。
論文 参考訳(メタデータ) (2024-02-28T05:43:22Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
プロンプトやモデルの知識を必要とせずに、強力なセキュリティ、堅牢性、および透かしを検出する能力を維持しつつ、高品質な透かしテキストを生成することは困難である。
本稿では,この問題に対処するための適応型透かし手法を提案する。
論文 参考訳(メタデータ) (2024-01-25T03:57:12Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
トークンレベルの透かしは、トークン確率分布を変更して生成されたテキストに透かしを挿入する。
この透かしアルゴリズムは、生成中のロジットを変化させ、劣化したテキストの品質につながる可能性がある。
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)。
論文 参考訳(メタデータ) (2023-11-16T08:36:00Z) - A Robust Semantics-based Watermark for Large Language Model against Paraphrasing [50.84892876636013]
大規模言語モデル(LLM)は、様々な自然言語処理において優れた能力を示している。
LLMは不適切にも違法にも使用できるという懸念がある。
本稿ではセマンティクスに基づく透かしフレームワークSemaMarkを提案する。
論文 参考訳(メタデータ) (2023-11-15T06:19:02Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。