論文の概要: From Seaweed to Security: The Emergence of Alginate in Compromising IoT Fingerprint Sensors
- arxiv url: http://arxiv.org/abs/2404.02150v1
- Date: Tue, 2 Apr 2024 17:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:20:18.262701
- Title: From Seaweed to Security: The Emergence of Alginate in Compromising IoT Fingerprint Sensors
- Title(参考訳): 海藻からセキュリティへ:IoTフィンガープリントセンサーの妥協におけるアルギン酸の出現
- Authors: Pouria Rad, Gokila Dorai, Mohsen Jozani,
- Abstract要約: 茶色の海藻由来のバイオポリマーであるAlginateを,IoT固有の容量型指紋センサをスポーフィングする新しい材料として紹介する。
当社の研究では、Alginateと最先端の画像認識技術を使用して、セキュリティとプライバシに関する重大な懸念を提起するニュアンスなIoT脆弱性を明らかにしています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing integration of capacitive fingerprint recognition sensors in IoT devices presents new challenges in digital forensics, particularly in the context of advanced fingerprint spoofing. Previous research has highlighted the effectiveness of materials such as latex and silicone in deceiving biometric systems. In this study, we introduce Alginate, a biopolymer derived from brown seaweed, as a novel material with the potential for spoofing IoT-specific capacitive fingerprint sensors. Our research uses Alginate and cutting-edge image recognition techniques to unveil a nuanced IoT vulnerability that raises significant security and privacy concerns. Our proof-of-concept experiments employed authentic fingerprint molds to create Alginate replicas, which exhibited remarkable visual and tactile similarities to real fingerprints. The conductivity and resistivity properties of Alginate, closely resembling human skin, make it a subject of interest in the digital forensics field, especially regarding its ability to spoof IoT device sensors. This study calls upon the digital forensics community to develop advanced anti-spoofing strategies to protect the evolving IoT infrastructure against such sophisticated threats.
- Abstract(参考訳): IoTデバイスへの容量型指紋認識センサの統合の増加は、特に高度な指紋スプーフィングの文脈において、デジタル法医学において新たな課題を提起している。
これまでの研究は、生体認証システムの劣化におけるラテックスやシリコーンなどの材料の有効性を強調してきた。
本研究では,藻類由来のバイオポリマーであるアルギン酸を,IoT特異的な容量型指紋センサをスポーフィングする新しい材料として紹介する。
当社の研究では、Alginateと最先端の画像認識技術を使用して、セキュリティとプライバシに関する重大な懸念を提起するニュアンスなIoT脆弱性を明らかにしています。
概念実証実験では、真正の指紋型を使ってアルギン酸塩のレプリカを作りました。
アルギン酸塩の電気伝導性と比抵抗特性は、人間の皮膚によく似ているため、特にIoTデバイスセンサーをスポープする能力に関して、デジタル法医学分野への関心の対象となっている。
この研究は、デジタル法医学コミュニティに、進化するIoTインフラストラクチャをこのような高度な脅威から守るための高度なアンチスプーフィング戦略を開発するよう呼びかける。
関連論文リスト
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
我々は,非接触指紋の局所化とセグメンテーションのためのディープラーニングベースのセグメンテーションツールを開発した。
評価では,30ピクセルの平均絶対誤差(MAE),5.92度の角度予測誤差(EAP),97.46%のラベル付け精度を示した。
論文 参考訳(メタデータ) (2023-11-26T01:56:10Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
本稿では,GAN生成画像の独自の隆起特性と生成アーティファクトを組み合わせた指紋画像に対する最初の深部偽造検出手法を提案する。
提案手法は,低複雑性で有効かつ堅牢である。
論文 参考訳(メタデータ) (2023-08-18T04:05:18Z) - Web Photo Source Identification based on Neural Enhanced Camera
Fingerprint [9.606477062236499]
Web写真のソースカメラ識別は、キャプチャされた画像とソースカメラとの信頼性の高いリンクを確立することを目的としている。
本稿では,ニューラルネットの強化されたセンサパターンノイズを利用した,革新的で実用的な音源識別フレームワークを提案する。
距離学習と周波数整合性を深層ネットワーク設計に組み込むことで,最新のスマートフォン写真における指紋抽出アルゴリズムの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-18T04:14:45Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
ソーシャルメディアからの指紋漏洩は 画像を匿名化したいという強い欲求を喚起します
指紋漏洩を保護するために、画像に知覚不能な摂動を加えることにより、敵攻撃が解決策として現れる。
この問題を解決するために,階層型パーセプティカルノイズ注入フレームワークであるFingerSafeを提案する。
論文 参考訳(メタデータ) (2022-08-23T02:20:46Z) - A Contactless Fingerprint Recognition System [5.565364597145569]
距離から指紋をキャプチャする非接触指紋認識システムを開発するためのアプローチを提案する。
キャプチャされたフィンガー写真はさらに処理され、グローバルおよびローカルな機能(ミニチュアベース)が取得される。
提案システムはNvidia Jetson Nano開発キットを用いて開発され,非接触指紋認識をリアルタイムで行うことができる。
論文 参考訳(メタデータ) (2021-08-20T08:21:55Z) - Privacy-Preserving Image Acquisition Using Trainable Optical Kernel [50.1239616836174]
本稿では、画像センサに到達する前に、光学領域の感度の高い識別情報を除去する訓練可能な画像取得手法を提案する。
イメージセンサに到達する前に、センシティブなコンテンツが抑制されるため、デジタルドメインには入らないため、いかなる種類のプライバシー攻撃でも検索できない。
論文 参考訳(メタデータ) (2021-06-28T11:08:14Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
クロスマテリアルとクロスセンサの一般化を改良した,堅牢なプレゼンテーションアタック検出(PAD)ソリューションを提案する。
具体的には,指紋スプーフ検出とクロスマテリアルスプーフ一般化を併用して,指紋スプーフ検出を訓練したCNNベースのアーキテクチャを構築した。
また,DNN(Deep Neural Network)にARL(Adversarial Expression Learning)を組み込んで,PADのセンサおよび材料不変表現を学習する。
論文 参考訳(メタデータ) (2020-04-06T19:03:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。