論文の概要: COVID-19 Detection Based on Blood Test Parameters using Various Artificial Intelligence Methods
- arxiv url: http://arxiv.org/abs/2404.02348v1
- Date: Tue, 2 Apr 2024 22:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 19:09:09.802337
- Title: COVID-19 Detection Based on Blood Test Parameters using Various Artificial Intelligence Methods
- Title(参考訳): 各種人工知能を用いた血液検査パラメータに基づくCOVID-19検出
- Authors: Kavian Khanjani, Seyed Rasoul Hosseini, Shahrzad Shashaani, Mohammad Teshnehlab,
- Abstract要約: 2019年には、新型コロナウイルスによる新型コロナウイルス感染症SARS-CoV-2(SARS-CoV-2)という新たな課題に直面した。
本研究は、自己分類分類器を用いて、さまざまなAI手法を用いて、新型コロナウイルス患者と他者とを区別することを目的とした。
- 参考スコア(独自算出の注目度): 0.7312229214872541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 2019, the world faced a new challenge: a COVID-19 disease caused by the novel coronavirus, SARS-CoV-2. The virus rapidly spread across the globe, leading to a high rate of mortality, which prompted health organizations to take measures to control its transmission. Early disease detection is crucial in the treatment process, and computer-based automatic detection systems have been developed to aid in this effort. These systems often rely on artificial intelligence (AI) approaches such as machine learning, neural networks, fuzzy systems, and deep learning to classify diseases. This study aimed to differentiate COVID-19 patients from others using self-categorizing classifiers and employing various AI methods. This study used two datasets: the blood test samples and radiography images. The best results for the blood test samples obtained from San Raphael Hospital, which include two classes of individuals, those with COVID-19 and those with non-COVID diseases, were achieved through the use of the Ensemble method (a combination of a neural network and two machines learning methods). The results showed that this approach for COVID-19 diagnosis is cost-effective and provides results in a shorter amount of time than other methods. The proposed model achieved an accuracy of 94.09% on the dataset used. Secondly, the radiographic images were divided into four classes: normal, viral pneumonia, ground glass opacity, and COVID-19 infection. These were used for segmentation and classification. The lung lobes were extracted from the images and then categorized into specific classes. We achieved an accuracy of 91.1% on the image dataset. Generally, this study highlights the potential of AI in detecting and managing COVID-19 and underscores the importance of continued research and development in this field.
- Abstract(参考訳): 2019年には、新型コロナウイルスによる新型コロナウイルス感染症SARS-CoV-2(SARS-CoV-2)という新たな課題に直面した。
新型コロナウイルスは世界中で急速に広まり、死亡率が高くなり、医療機関は感染抑制策を講じた。
早期の疾患検出は治療プロセスにおいて不可欠であり、この取り組みを支援するためにコンピュータベースの自動検出システムが開発されている。
これらのシステムは、機械学習、ニューラルネットワーク、ファジィシステム、病気の分類のためのディープラーニングといった人工知能(AI)アプローチに依存していることが多い。
本研究は、自己分類分類器を用いて、さまざまなAI手法を用いて、新型コロナウイルス患者と他者とを区別することを目的とした。
この研究では、血液検査サンプルと放射線画像の2つのデータセットを使用しました。
サンラファエル病院で採取した血液検査の最良の結果は、Ensemble法(ニューラルネットワークと2つの機械学習手法の組み合わせ)を用いて、新型コロナウイルスと非新型コロナウイルスの2種類の個人を含む。
その結果、新型コロナウイルスの診断はコスト効率が高く、他の方法よりも短い時間で結果が得られることがわかった。
提案されたモデルは、使用するデータセットに対して94.09%の精度を達成した。
第2に、X線写真は、正常、ウイルス性肺炎、グラウンドガラスの透明度、COVID-19感染の4つのクラスに分けられた。
これらはセグメンテーションと分類に使用された。
肺葉は画像から抽出され、その後特定のクラスに分類された。
画像データセットで91.1%の精度を達成した。
一般的に、この研究は、新型コロナウイルスの検出と管理におけるAIの可能性を強調し、この分野における継続的な研究と開発の重要性を強調している。
関連論文リスト
- When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation [1.6019444314820142]
本研究は,胸部X線を用いたコビッドウイルス感染肺の検出のためのディープラーニングアーキテクチャに基づく研究である。
我々の新しいアプローチは、よく知られた前処理技術、特徴抽出法、およびデータセットバランス法を組み合わせることで、優れた98%の認識率をもたらす。
論文 参考訳(メタデータ) (2021-12-05T05:04:38Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Generation of COVID-19 Chest CT Scan Images using Generative Adversarial
Networks [0.0]
SARS-CoV-2は、新型コロナウイルスに感染するウイルス性伝染病で、世界中で急速に広まっている。
拡散を減らすために人々をテストし、分離することが非常に重要であり、ここからは、これを迅速かつ効率的に行う必要がある。
いくつかの研究によると、Chest-CTは、新型コロナウイルス患者の診断において、現在の標準であるRT-PCR検査より優れている。
論文 参考訳(メタデータ) (2021-05-20T13:04:21Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
新型コロナウイルス(COVID-19)が世界中に広がる中で、医療機関は患者を診断し、必要な頻度で検査する能力を失っている。
研究は、胸部X線でウイルス性細菌性肺炎から新型コロナウイルスを検出できる有望な結果を示している。
本研究では,ラベルやトレーニングデータを必要とせず,未知のクラス(COVID-19)の画像を検出するランダム化生成敵ネットワーク(RANDGAN)を提案する。
論文 参考訳(メタデータ) (2020-10-06T15:58:09Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
コロナウイルス感染症2019(COVID-19)は、数百万人に影響している。
一般的なCCDやCMOSカメラで撮影された視線領域の画像を分析する新しいスクリーニング手法は、新型コロナウイルスの急激なリスクスクリーニングを確実に実現する可能性がある。
論文 参考訳(メタデータ) (2020-09-04T00:50:27Z) - Automated Detection and Forecasting of COVID-19 using Deep Learning
Techniques: A Review [10.153806948106684]
コロナウイルス(Coronavirus、COVID-19)は、世界中の多くの人々の健康を危険にさらす病気である。
高速かつ正確な診断のために,X線およびCT画像モダリティが広く用いられている。
ディープラーニング(DL)ネットワークは最近、従来の機械学習(ML)と比較して人気を博している。
論文 参考訳(メタデータ) (2020-07-16T16:04:17Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
本研究の主な目的は、胸部X線検査における新型コロナウイルススクリーニングの問題に対して、正確かつ効率的な方法を提案することである。
13,569枚のX線画像のデータセットを、健康な非新型コロナウイルス患者と新型コロナウイルス患者に分けて、提案したアプローチを訓練する。
結果: 提案手法により, 全体の精度93.9%, COVID-19, 感度96.8%, 正の予測100%の高品質モデルが得られた。
論文 参考訳(メタデータ) (2020-04-12T23:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。