論文の概要: FraGNNet: A Deep Probabilistic Model for Tandem Mass Spectrum Prediction
- arxiv url: http://arxiv.org/abs/2404.02360v2
- Date: Wed, 27 Aug 2025 03:28:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 19:07:41.293021
- Title: FraGNNet: A Deep Probabilistic Model for Tandem Mass Spectrum Prediction
- Title(参考訳): FraGNNet:タンデム質量スペクトル予測のための深い確率モデル
- Authors: Adamo Young, Fei Wang, David S Wishart, Bo Wang, Russell Greiner, Hannes Röst,
- Abstract要約: 合成MS/MSスペクトル(C2MS)モデルは,MS/MSスペクトルを予測した実ライブラリを拡大することにより,検索率を向上させることができる。
C2MS予測のための新しい確率的手法であるFraGNNetを開発した。
- 参考スコア(独自算出の注目度): 8.45372558875364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compound identification from tandem mass spectrometry (MS/MS) data is a critical step in the analysis of complex mixtures. Typical solutions for the MS/MS spectrum to compound (MS2C) problem involve comparing the unknown spectrum against a library of known spectrum-molecule pairs, an approach that is limited by incomplete library coverage. Compound to MS/MS spectrum (C2MS) models can improve retrieval rates by augmenting real libraries with predicted MS/MS spectra. Unfortunately, many existing C2MS models suffer from problems with mass accuracy, generalization, or interpretability. We develop a new probabilistic method for C2MS prediction, FraGNNet, that can efficiently and accurately simulate MS/MS spectra with high mass accuracy. Our approach formulates the C2MS problem as learning a distribution over molecule fragments. FraGNNet achieves state-of-the-art performance in terms of prediction error and surpasses existing C2MS models as a tool for retrieval-based MS2C.
- Abstract(参考訳): タンデム質量分析法(MS/MS)データからの化合物の同定は複雑な混合物の分析において重要なステップである。
MS/MSスペクトルから化合物(MS2C)問題への典型的な解決策は、未知のスペクトルと既知のスペクトル分子対のライブラリの比較である。
合成MS/MSスペクトル(C2MS)モデルは,MS/MSスペクトルを予測した実ライブラリを拡大することにより,検索率を向上させることができる。
残念ながら、多くの既存のC2MSモデルは、質量精度、一般化、解釈可能性の問題に悩まされている。
C2MS予測のための新しい確率的手法であるFraGNNetを開発した。
本手法は分子断片上の分布の学習としてC2MS問題を定式化する。
FraGNNetは、予測誤差の観点から最先端のパフォーマンスを達成し、検索ベースのMS2Cのツールとして既存のC2MSモデルを上回る。
関連論文リスト
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
本稿ではスペクトル認識のための新しいパラダイムを提供するスペクトルFMと呼ばれるスペクトル基盤モデルを提案する。
畳み込みニューラルネットワークを利用した革新的なスペクトルエンコーダを提案し、スペクトルデータにおける微細な局所信号構造と高レベルのグローバルな依存関係の両方を効果的に捕捉する。
2つの新しい自己教師型学習タスク、すなわちマスク付き再構成と次のスロット信号予測が、SpectrumFMの事前学習のために開発され、モデルがリッチで伝達可能な表現を学習できるようにする。
論文 参考訳(メタデータ) (2025-08-02T14:40:50Z) - DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models [66.41802970528133]
スペクトルからの分子構造解明は化学の基礎的な問題である。
従来の手法は専門家の解釈に大きく依存し、拡張性に欠ける。
マルチモーダルスペクトルデータから2次元および3次元分子構造を直接推定する生成フレームワークであるDiffSpectraを提案する。
論文 参考訳(メタデータ) (2025-07-09T13:57:20Z) - Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table [60.78615287040791]
XAStructは結晶構造からXASスペクトルを予測し、XAS入力から局所構造記述子を推測できる学習フレームワークである。
XAStructは、周期表全体にわたって70以上の要素にまたがる大規模なデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2025-06-13T15:58:05Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
スペクトルイメージングは、医療や都市景観の理解など、様々な領域で有望な応用を提供する。
スペクトルカメラのチャネル次元と捕獲波長のばらつきは、AI駆動方式の開発を妨げる。
我々は、$textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$のモデルである$textbfCARL$を紹介した。
論文 参考訳(メタデータ) (2025-04-27T13:06:40Z) - To Bin or not to Bin: Alternative Representations of Mass Spectra [0.0]
我々は、下流機械学習タスク、すなわちセットベースおよびグラフベース表現の前に、マススペクトルの双対化の2つの選択肢について検討する。
提案した2つの表現を比較して、回帰タスクにおいて、セット変換器とグラフニューラルネットワークをトレーニングし、それぞれが、バイナリデータに基づいてトレーニングされた多層パーセプトロンよりもかなり優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2025-02-15T16:52:36Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMSは式制限エンコーダ-デコーダ生成ネットワークである。
我々は、潜伏埋め込みと分子構造を橋渡しする頑健なデコーダを開発する。
実験の結果、DiffMS は $textitde novo$ 分子生成で既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Mass Spectra Prediction with Structural Motif-based Graph Neural
Networks [21.71309513265843]
MoMS-Netは、構造モチーフから得られる情報とグラフニューラルネットワーク(GNN)の実装を用いて質量スペクトルを予測するシステムである。
我々は、様々な質量スペクトルでモデルを試験し、既存のモデルよりもその優位性を観察した。
論文 参考訳(メタデータ) (2023-06-28T10:33:57Z) - Efficiently predicting high resolution mass spectra with graph neural
networks [28.387227518307604]
質量スペクトルから小さな分子を同定することは、計算メタボロミクスにおける主要な開問題である。
未知のスペクトルは、化学構造の大規模なデータベースから予測されるスペクトルと一致している。
我々は、入力分子グラフから分子式上の確率分布への写像としてスペクトル予測をキャストすることで、このトレードオフを解決する。
論文 参考訳(メタデータ) (2023-01-26T21:10:26Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
本稿では,分子集合体の多次元電子スペクトルと電子励起を結合した構造環境下でのシミュレーション手法を提案する。
このアプローチの重要な側面は、NMQSD方程式を2重系ヒルベルト空間で伝播するが、同じ雑音を持つことである。
論文 参考訳(メタデータ) (2022-07-06T15:30:38Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
量子位相推定は、レコード長の逆数が未知の位相の整数倍でない場合にスペクトルリークに悩まされる。
複数のサンプルが利用できるとき,クレーマー・ラオ境界に近づいた二重周波数推定器を提案する。
論文 参考訳(メタデータ) (2022-01-23T17:20:34Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
本研究では,HARPS-N線速度スペクトルから高精度の太陽スペクトルを抽出するニューラルネットワークオートエンコーダ手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T12:54:48Z) - MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using
Graph Transformers [3.2951121243459522]
タンデム質量スペクトルは、分子に関する重要な構造情報を提供する断片化パターンをキャプチャする。
70年以上にわたり、スペクトル予測はこの分野において重要な課題であり続けている。
我々はタンデム質量スペクトルを正確に予測する新しいモデルMassFormerを提案する。
論文 参考訳(メタデータ) (2021-11-08T20:55:15Z) - Neural density estimation and uncertainty quantification for laser
induced breakdown spectroscopy spectra [4.698576003197588]
構造付きスペクトル潜在空間上の正規化フローを用いて確率密度を推定する。
観測されていない状態ベクトルを予測する際に不確実性定量化法を評価する。
火星探査機キュリオシティが収集したレーザー誘起分解分光データに本手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-08-17T01:10:29Z) - Spectral Unmixing With Multinomial Mixture Kernel and Wasserstein
Generative Adversarial Loss [4.56877715768796]
本研究では1次元畳み込みカーネルとスペクトル不確実性を用いたスペクトルアンミックスのための新しいフレームワークを提案する。
高レベルの表現はデータから計算され、さらに多項混合モデルでモデル化される。
実データと合成データの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-12T16:49:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。