論文の概要: Revisiting subword tokenization: A case study on affixal negation in large language models
- arxiv url: http://arxiv.org/abs/2404.02421v1
- Date: Wed, 3 Apr 2024 03:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:49:24.866815
- Title: Revisiting subword tokenization: A case study on affixal negation in large language models
- Title(参考訳): サブワードトークン化の再検討:大言語モデルにおける接尾辞否定の事例研究
- Authors: Thinh Hung Truong, Yulia Otmakhova, Karin Verspoor, Trevor Cohn, Timothy Baldwin,
- Abstract要約: 現代英語大言語モデル(LLM)に対する接尾辞否定の影響を計測する。
我々は、異なるサブワードトークン化手法を用いてLLMを用いて実験を行う。
モデルは全体として、接尾辞の意味を確実に認識できることを示す。
- 参考スコア(独自算出の注目度): 57.75279238091522
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we measure the impact of affixal negation on modern English large language models (LLMs). In affixal negation, the negated meaning is expressed through a negative morpheme, which is potentially challenging for LLMs as their tokenizers are often not morphologically plausible. We conduct extensive experiments using LLMs with different subword tokenization methods, which lead to several insights on the interaction between tokenization performance and negation sensitivity. Despite some interesting mismatches between tokenization accuracy and negation detection performance, we show that models can, on the whole, reliably recognize the meaning of affixal negation.
- Abstract(参考訳): 本研究では,現代英語大言語モデル (LLM) に対する近似否定の影響を計測する。
接尾辞では、否定的な意味は否定的な形態素を通して表現されるが、トークン化剤は形態学的に妥当でないことが多いため、LSMにとって潜在的に困難である。
我々は,異なるサブワードのトークン化手法を用いたLLMを用いた広範囲な実験を行い,トークン化性能と否定感度の相互作用についていくつかの知見を得た。
トークン化精度と否定検出性能の間にはいくつかの興味深いミスマッチがあるが、全体としては、近似否定の意味を確実に認識できることが示されている。
関連論文リスト
- Generating Diverse Negations from Affirmative Sentences [0.999726509256195]
否定は、動詞句、節、その他の表現において負の極性を符号化する現実世界の応用において重要である。
多様な否定型を生成することにより,否定データセットの欠如に対処する手法であるNegVerseを提案する。
我々は,構文構造に基づいて,否定が最も起こりやすい文の一部をマスキングするための新しい規則を提案する。
また, 否定の手がかりを同定し, 退化例を除去し, 多様な有意義な摂動を生じさせるフィルタリング機構を提案する。
論文 参考訳(メタデータ) (2024-10-30T21:25:02Z) - This is not a Dataset: A Large Negation Benchmark to Challenge Large
Language Models [4.017326849033009]
我々は,否定を理解する大規模言語モデルの最適部分性能の理由を明らかにする。
我々は,コモンセンス知識に関する40万前後の記述文を半自動生成する大規模データセットを提案する。
我々は,その一般化と推論能力を把握するために,ゼロショットアプローチで利用可能な最大オープンLCMを用いてデータセットを構築した。
論文 参考訳(メタデータ) (2023-10-24T15:38:21Z) - Language models are not naysayers: An analysis of language models on
negation benchmarks [58.32362243122714]
我々は,次世代自動回帰言語モデルによる否定処理能力の評価を行った。
LLMには,否定の存在に対する感受性,否定の語彙的意味を捉える能力の欠如,否定下での推論の失敗など,いくつかの制限があることが示されている。
論文 参考訳(メタデータ) (2023-06-14T01:16:37Z) - Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal
Negation [59.307534363825816]
否定は現在の言語モデルでは不十分だが、この問題の範囲は広く理解されていない。
自然言語推論(NLI)テストスイートを導入し,NLP手法の能力を検証した。
論文 参考訳(メタデータ) (2022-10-06T23:39:01Z) - Improving negation detection with negation-focused pre-training [58.32362243122714]
否定は共通の言語的特徴であり、多くの言語理解タスクにおいて不可欠である。
最近の研究で、最先端のNLPモデルは否定を含むサンプルで性能が低いことが示されている。
本稿では,データ拡張と否定マスキングを対象とする,否定に焦点をあてた新たな事前学習戦略を提案する。
論文 参考訳(メタデータ) (2022-05-09T02:41:11Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Understanding by Understanding Not: Modeling Negation in Language Models [81.21351681735973]
否定は自然言語の中核構造である。
本稿では,否定された総称文に基づく不一致目的を用いて,言語モデリング目標の強化を提案する。
否定されたLAMAデータセットの平均top1エラー率を4%に削減します。
論文 参考訳(メタデータ) (2021-05-07T21:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。