PhonologyBench: Evaluating Phonological Skills of Large Language Models
- URL: http://arxiv.org/abs/2404.02456v2
- Date: Fri, 5 Apr 2024 04:55:24 GMT
- Title: PhonologyBench: Evaluating Phonological Skills of Large Language Models
- Authors: Ashima Suvarna, Harshita Khandelwal, Nanyun Peng,
- Abstract summary: Phonology, the study of speech's structure and pronunciation rules, is a critical yet often overlooked component in Large Language Model (LLM) research.
We present PhonologyBench, a novel benchmark consisting of three diagnostic tasks designed to explicitly test the phonological skills of LLMs.
We observe a significant gap of 17% and 45% on Rhyme Word Generation and Syllable counting, respectively, when compared to humans.
- Score: 57.80997670335227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phonology, the study of speech's structure and pronunciation rules, is a critical yet often overlooked component in Large Language Model (LLM) research. LLMs are widely used in various downstream applications that leverage phonology such as educational tools and poetry generation. Moreover, LLMs can potentially learn imperfect associations between orthographic and phonological forms from the training data. Thus, it is imperative to benchmark the phonological skills of LLMs. To this end, we present PhonologyBench, a novel benchmark consisting of three diagnostic tasks designed to explicitly test the phonological skills of LLMs in English: grapheme-to-phoneme conversion, syllable counting, and rhyme word generation. Despite having no access to speech data, LLMs showcased notable performance on the PhonologyBench tasks. However, we observe a significant gap of 17% and 45% on Rhyme Word Generation and Syllable counting, respectively, when compared to humans. Our findings underscore the importance of studying LLM performance on phonological tasks that inadvertently impact real-world applications. Furthermore, we encourage researchers to choose LLMs that perform well on the phonological task that is closely related to the downstream application since we find that no single model consistently outperforms the others on all the tasks.
Related papers
- Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Beware of Words: Evaluating the Lexical Diversity of Conversational LLMs using ChatGPT as Case Study [3.0059120458540383]
We consider the evaluation of the lexical richness of the text generated by conversational Large Language Models (LLMs) and how it depends on the model parameters.
The results show how lexical richness depends on the version of ChatGPT and some of its parameters, such as the presence penalty, or on the role assigned to the model.
arXiv Detail & Related papers (2024-02-11T13:41:17Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision.
We conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E.
We compare three integration methods between LLMs and speech models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder
arXiv Detail & Related papers (2023-12-30T14:20:04Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
Large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language.
This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-11-15T15:12:15Z) - Probing LLMs for Joint Encoding of Linguistic Categories [10.988109020181563]
We propose a framework for testing the joint encoding of linguistic categories in Large Language Models (LLMs)
We find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy.
arXiv Detail & Related papers (2023-10-28T12:46:40Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
We advocate for the revival of vocabulary tests as a valuable tool for assessing Large Language Models (LLMs) performance.
We evaluate seven LLMs using two vocabulary test formats across two languages and uncover surprising gaps in their lexical knowledge.
arXiv Detail & Related papers (2023-10-23T08:45:12Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
We focus on evaluating the efficacy of large language models (LLMs) in the realm of education.
We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios.
We also investigate the influence of various prompting techniques such as zero- and few-shot method.
We find that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems.
arXiv Detail & Related papers (2023-08-28T12:47:41Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
This paper explores the integration of Large Language Models (LLMs) into Automatic Speech Recognition (ASR) systems.
Our primary focus is to investigate the potential of using an LLM's in-context learning capabilities to enhance the performance of ASR systems.
arXiv Detail & Related papers (2023-07-13T02:31:55Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
We present a structured prompting approach for linguistic structured prediction tasks.
We evaluate this approach on part-of-speech tagging, named entity recognition, and sentence chunking.
We find that while PLMs contain significant prior knowledge of task labels due to task leakage into the pretraining corpus, structured prompting can also retrieve linguistic structure with arbitrary labels.
arXiv Detail & Related papers (2022-11-15T01:13:39Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.