Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach
- URL: http://arxiv.org/abs/2404.02511v1
- Date: Wed, 3 Apr 2024 06:55:59 GMT
- Title: Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach
- Authors: Hoang Huy Nguyen, Yan Li, Tuo Zhao,
- Abstract summary: In machine-learning models, the algorithm has to communicate to the data center and sample data for its gradient.
This gives rise to the need for a decentralized optimization algorithm that is communication-efficient and minimizes the number of gradient computations.
We propose a primal-dual sliding with conditional gradient sliding framework, which is communication-efficient and achieves an $varepsilon$-approximate solution.
- Score: 32.36073823372713
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In modern decentralized applications, ensuring communication efficiency and privacy for the users are the key challenges. In order to train machine-learning models, the algorithm has to communicate to the data center and sample data for its gradient computation, thus exposing the data and increasing the communication cost. This gives rise to the need for a decentralized optimization algorithm that is communication-efficient and minimizes the number of gradient computations. To this end, we propose the primal-dual sliding with conditional gradient sliding framework, which is communication-efficient and achieves an $\varepsilon$-approximate solution with the optimal gradient complexity of $O(1/\sqrt{\varepsilon}+\sigma^2/{\varepsilon^2})$ and $O(\log(1/\varepsilon)+\sigma^2/\varepsilon)$ for the convex and strongly convex setting respectively and an LO (Linear Optimization) complexity of $O(1/\varepsilon^2)$ for both settings given a stochastic gradient oracle with variance $\sigma^2$. Compared with the prior work \cite{wai-fw-2017}, our framework relaxes the assumption of the optimal solution being a strict interior point of the feasible set and enjoys wider applicability for large-scale training using a stochastic gradient oracle. We also demonstrate the efficiency of our algorithms with various numerical experiments.
Related papers
- An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - DoCoM: Compressed Decentralized Optimization with Near-Optimal Sample
Complexity [25.775517797956237]
This paper proposes the Doubly Compressed Momentum-assisted tracking algorithm $ttDoCoM$ for communication.
We show that our algorithm outperforms several state-of-the-art algorithms in practice.
arXiv Detail & Related papers (2022-02-01T07:27:34Z) - Near-Optimal Sparse Allreduce for Distributed Deep Learning [18.99898181586806]
Communication overhead is one of the major obstacles to train large deep learning models at scale.
This paper proposes O$k$-Top$k$, a scheme for distributed training with sparse gradients.
arXiv Detail & Related papers (2022-01-19T13:56:57Z) - On the Benefits of Multiple Gossip Steps in Communication-Constrained
Decentralized Optimization [29.42301299741866]
We show that having $O(logfrac1epsilon)$ iterations with constant step size - $O(logfrac1epsilon)$ - enables convergence to within $epsilon$ of the optimal value for smooth non- compressed gradient objectives.
To our knowledge, this is the first work that derives the convergence results for non optimization under compressed communication compression parameters.
arXiv Detail & Related papers (2020-11-20T21:17:32Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.