Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead
- URL: http://arxiv.org/abs/2404.02525v3
- Date: Mon, 07 Oct 2024 11:52:19 GMT
- Title: Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead
- Authors: Xin Zhou, Sicong Cao, Xiaobing Sun, David Lo,
- Abstract summary: There is currently no existing survey that focuses on the utilization of Large Language Models for vulnerability detection and repair.
This paper offers a systematic literature review of approaches aimed at improving vulnerability detection and repair through the utilization of LLMs.
- Score: 12.324949480085424
- License:
- Abstract: The significant advancements in Large Language Models (LLMs) have resulted in their widespread adoption across various tasks within Software Engineering (SE), including vulnerability detection and repair. Numerous studies have investigated the application of LLMs to enhance vulnerability detection and repair tasks. Despite the increasing research interest, there is currently no existing survey that focuses on the utilization of LLMs for vulnerability detection and repair. In this paper, we aim to bridge this gap by offering a systematic literature review of approaches aimed at improving vulnerability detection and repair through the utilization of LLMs. The review encompasses research work from leading SE, AI, and Security conferences and journals, encompassing 43 papers published across 25 distinct venues, along with 15 high-quality preprint papers, bringing the total to 58 papers. By answering three key research questions, we aim to (1) summarize the LLMs employed in the relevant literature, (2) categorize various LLM adaptation techniques in vulnerability detection, and (3) classify various LLM adaptation techniques in vulnerability repair. Based on our findings, we have identified a series of limitations of existing studies. Additionally, we have outlined a roadmap highlighting potential opportunities that we believe are pertinent and crucial for future research endeavors.
Related papers
- Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - A Systematic Literature Review on Large Language Models for Automated Program Repair [15.239506022284292]
It is challenging for researchers to understand the current achievements, challenges, and potential opportunities.
This work provides the first systematic literature review to summarize the applications of Large Language Models in APR between 2020 and 2024.
arXiv Detail & Related papers (2024-05-02T16:55:03Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
Large Language Models (LLMs) have emerged as powerful tools in various research domains.
This article examines their potential through a literature review and firsthand experimentation.
arXiv Detail & Related papers (2024-04-09T15:53:06Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - A Survey on Automated Software Vulnerability Detection Using Machine
Learning and Deep Learning [19.163031235081565]
Machine Learning (ML) and Deep Learning (DL) based models for detecting vulnerabilities in source code have been presented in recent years.
It may be difficult to discover gaps in existing research and potential for future improvement without a comprehensive survey.
This work address that gap by presenting a systematic survey to characterize various features of ML/DL-based source code level software vulnerability detection approaches.
arXiv Detail & Related papers (2023-06-20T16:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.