A Systematic Literature Review on Large Language Models for Automated Program Repair
- URL: http://arxiv.org/abs/2405.01466v2
- Date: Sun, 12 May 2024 05:13:07 GMT
- Title: A Systematic Literature Review on Large Language Models for Automated Program Repair
- Authors: Quanjun Zhang, Chunrong Fang, Yang Xie, YuXiang Ma, Weisong Sun, Yun Yang, Zhenyu Chen,
- Abstract summary: It is challenging for researchers to understand the current achievements, challenges, and potential opportunities.
This work provides the first systematic literature review to summarize the applications of Large Language Models in APR between 2020 and 2024.
- Score: 15.239506022284292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated Program Repair (APR) attempts to patch software bugs and reduce manual debugging efforts. Very recently, with the advances in Large Language Models (LLMs), an increasing number of APR techniques have been proposed, facilitating software development and maintenance and demonstrating remarkable performance. However, due to ongoing explorations in the LLM-based APR field, it is challenging for researchers to understand the current achievements, challenges, and potential opportunities. This work provides the first systematic literature review to summarize the applications of LLMs in APR between 2020 and 2024. We analyze 127 relevant papers from LLMs, APR and their integration perspectives. First, we categorize existing popular LLMs that are applied to support APR and outline three types of utilization strategies for their deployment. Besides, we detail some specific repair scenarios that benefit from LLMs, e.g., semantic bugs and security vulnerabilities. Furthermore, we discuss several critical aspects of integrating LLMs into APR research, e.g., input forms and open science. Finally, we highlight a set of challenges remaining to be investigated and the potential guidelines for future research. Overall, our paper provides a systematic overview of the research landscape to the APR community, helping researchers gain a comprehensive understanding of achievements and promote future research.
Related papers
- LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
This research pioneers the use of fine-tuned Large Language Models (LLMs) to automate Systematic Literature Reviews ( SLRs)
Our study employed the latest fine-tuning methodologies together with open-sourced LLMs, and demonstrated a practical and efficient approach to automating the final execution stages of an SLR process.
The results maintained high fidelity in factual accuracy in LLM responses, and were validated through the replication of an existing PRISMA-conforming SLR.
arXiv Detail & Related papers (2024-04-08T00:08:29Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes.
We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university.
arXiv Detail & Related papers (2024-04-06T12:06:56Z) - Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead [12.324949480085424]
There is currently no existing survey that focuses on the utilization of Large Language Models for vulnerability detection and repair.
This paper offers a systematic literature review of approaches aimed at improving vulnerability detection and repair through the utilization of LLMs.
arXiv Detail & Related papers (2024-04-03T07:27:33Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
Large Language Models (LLMs) have drawn widespread attention and research due to their astounding performance in text generation and reasoning tasks.
The evaluation and optimization of LLMs in software engineering tasks, such as code generation, have become a research focus.
This paper comprehensively investigate and collate the research and products combining LLMs with software engineering.
arXiv Detail & Related papers (2023-08-22T12:37:29Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
Information Extraction seeks to derive structured information from unstructured texts.
This paper presents a review of neural approaches to low-resource IE from emphtraditional and emphLLM-based perspectives.
arXiv Detail & Related papers (2022-02-16T13:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.