論文の概要: Semi-Supervised Unconstrained Head Pose Estimation in the Wild
- arxiv url: http://arxiv.org/abs/2404.02544v2
- Date: Fri, 23 Aug 2024 10:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 19:37:13.535580
- Title: Semi-Supervised Unconstrained Head Pose Estimation in the Wild
- Title(参考訳): 野生における半監督型非拘束型頭部電位推定
- Authors: Huayi Zhou, Fei Jiang, Jin Yuan, Yong Rui, Hongtao Lu, Kui Jia,
- Abstract要約: 本研究では,最初の半教師なしヘッドポーズ推定手法であるSemiUHPEを提案する。
本手法は,野生頭部のアスペクト比不変収穫が,それまでのランドマークベースのアフィンアライメントよりも優れているという観測に基づいている。
実験とアブレーション研究は、SemiUHPEが既存の手法を公開ベンチマークで大きく上回っていることを示している。
- 参考スコア(独自算出の注目度): 60.08319512840091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing research on unconstrained in-the-wild head pose estimation suffers from the flaws of its datasets, which consist of either numerous samples by non-realistic synthesis or constrained collection, or small-scale natural images yet with plausible manual annotations. To alleviate it, we propose the first semi-supervised unconstrained head pose estimation method SemiUHPE, which can leverage abundant easily available unlabeled head images. Technically, we choose semi-supervised rotation regression and adapt it to the error-sensitive and label-scarce problem of unconstrained head pose. Our method is based on the observation that the aspect-ratio invariant cropping of wild heads is superior to the previous landmark-based affine alignment given that landmarks of unconstrained human heads are usually unavailable, especially for less-explored non-frontal heads. Instead of using an empirically fixed threshold to filter out pseudo labeled heads, we propose dynamic entropy based filtering to adaptively remove unlabeled outliers as training progresses by updating the threshold in multiple stages. We then revisit the design of weak-strong augmentations and improve it by devising two novel head-oriented strong augmentations, termed pose-irrelevant cut-occlusion and pose-altering rotation consistency respectively. Extensive experiments and ablation studies show that SemiUHPE outperforms existing methods greatly on public benchmarks under both the front-range and full-range settings. Code is released in \url{https://github.com/hnuzhy/SemiUHPE}.
- Abstract(参考訳): 既存研究では、非現実的な合成や制約されたコレクションによる多数のサンプルからなり、また、手動による手動による手動による小さな自然画像から成っているデータセットの欠陥に悩まされている。
そこで本研究では,手軽に手軽に手軽に利用できるヘッドポーズ推定手法であるSemiUHPEを提案する。
技術的には、半教師付き回転回帰を選択し、非拘束な頭部ポーズの誤差に敏感でラベルスカースな問題に適応する。
本手法は, 野生の頭部のアスペクト比不変な収穫が, 従来のランドマークに基づくアフィンアライメントよりも優れているという観察に基づいている。
実験的に固定された閾値を用いて擬似ラベル付きヘッドをフィルタリングする代わりに、動的エントロピーに基づくフィルタリングを提案する。
次に,弱張力強化の設計を再考し,それぞれ「ポーズ非関連カット・オクルージョン」と「ポーズ-アタリング・ローテーション・一貫性」と呼ばれる2つの新しい頭部指向強強化を考案して改善する。
大規模な実験とアブレーション研究により、SemiUHPEは、フロントレンジとフルレンジの両方の設定下での公開ベンチマークにおいて、既存の手法を大幅に上回っていることが示されている。
コードは \url{https://github.com/hnuzhy/SemiUHPE} でリリースされる。
関連論文リスト
- Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
航法的に訓練された検出器は、限定的で単調な偽のパターンに過度に適合する傾向にあり、特徴空間は高度に制約され、低ランクになる。
潜在的な治療法の1つは、ビジョンファウンデーションモデルに事前訓練された知識を取り入れて、機能領域を広げることである。
主成分を凍結し,残った成分のみを適応させることで,偽造関係のパターンを学習しながら,事前学習した知識を保存できる。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation [11.195959019678314]
整合性学習は、半教師付き医療画像セグメンテーションにおいて、ラベルのないデータに取り組むための中心的な戦略である。
本稿では,上記の課題を解決するための適応的双方向変位法を提案する。
論文 参考訳(メタデータ) (2024-05-01T08:17:43Z) - Towards Robust and Unconstrained Full Range of Rotation Head Pose
Estimation [2.915868985330569]
本稿では,非拘束型終端頭部ポーズ推定のための新しい手法を提案する。
効率的かつロバストな直接回帰のための連続6次元回転行列表現を提案する。
提案手法は,他の最先端手法よりも効率的かつロバストに優れる。
論文 参考訳(メタデータ) (2023-09-14T12:17:38Z) - Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation [33.86986028882488]
咬合は, 咬合者の形状, 外観, 位置の変動が大きいため, 単眼多面体3次元ポーズ推定において大きな脅威となる。
既存のメソッドは、ポーズ先/制約、データ拡張、暗黙の推論でオクルージョンを処理しようとする。
本研究では、ボトムアップ型多人数ポーズ推定を大幅に改善する、このプロセスを明示的にモデル化する手法を開発した。
論文 参考訳(メタデータ) (2022-07-29T22:12:50Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3次元ポーズ推定アプローチは、強い(2D/3Dポーズ)または弱い(複数ビューまたは深さ)ペアによる監督の異なる形態を利用する。
我々は3Dポーズ学習を,ラベル付きソースドメインから完全に損なわれないターゲットへのタスク知識の転送を目的とした,自己指導型適応問題として捉えた。
我々は、異なる自己適応設定を評価し、標準ベンチマークで最先端の3Dポーズ推定性能を示す。
論文 参考訳(メタデータ) (2022-04-05T03:52:57Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Towards Calibrated Model for Long-Tailed Visual Recognition from Prior
Perspective [17.733087434470907]
実世界のデータは、深刻な階級不均衡問題に直面し、長い尾の分布を示す。
本稿では,このジレンマを緩和する2つの新しい手法を提案する。
まず、UniMix(UniMix)と呼ばれるバランス指向データ拡張を推定し、長期のシナリオでミキサアップを促進する。
第二に、ベイズ理論に動機づけられたベイズバイアス(ベイアズ)は、標準的なクロスエントロピー損失の修正としてそれを補償する。
論文 参考訳(メタデータ) (2021-11-06T12:53:34Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
異なるデータセットにまたがるトランスファー可能なドメイン不変知識を探索できる,新しい弱い教師付き病巣移動フレームワークを提案する。
wasserstein quantified transferability frameworkは、広い範囲の転送可能なコンテキスト依存性を強調するために開発されている。
新規な自己監督型擬似ラベル生成器は、送信困難かつ転送容易なターゲットサンプルの両方に対して、確実な擬似ピクセルラベルを等しく提供するように設計されている。
論文 参考訳(メタデータ) (2020-12-08T02:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。