論文の概要: SliceIt! -- A Dual Simulator Framework for Learning Robot Food Slicing
- arxiv url: http://arxiv.org/abs/2404.02569v2
- Date: Thu, 26 Sep 2024 05:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:26:10.581267
- Title: SliceIt! -- A Dual Simulator Framework for Learning Robot Food Slicing
- Title(参考訳): ロボット食品スライシング学習のためのデュアルシミュレーターフレームワークSliceIt!
- Authors: Cristian C. Beltran-Hernandez, Nicolas Erbetti, Masashi Hamaya,
- Abstract要約: 本研究は、ロボットが自律的かつ安全に食品切断タスクを学習できるようにすることに焦点を当てる。
シミュレーションにおけるロボット食品スライシングタスクを安全かつ効率的に学習するフレームワークであるSliceIt!を提案する。
- 参考スコア(独自算出の注目度): 5.497832119577795
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cooking robots can enhance the home experience by reducing the burden of daily chores. However, these robots must perform their tasks dexterously and safely in shared human environments, especially when handling dangerous tools such as kitchen knives. This study focuses on enabling a robot to autonomously and safely learn food-cutting tasks. More specifically, our goal is to enable a collaborative robot or industrial robot arm to perform food-slicing tasks by adapting to varying material properties using compliance control. Our approach involves using Reinforcement Learning (RL) to train a robot to compliantly manipulate a knife, by reducing the contact forces exerted by the food items and by the cutting board. However, training the robot in the real world can be inefficient, and dangerous, and result in a lot of food waste. Therefore, we proposed SliceIt!, a framework for safely and efficiently learning robot food-slicing tasks in simulation. Following a real2sim2real approach, our framework consists of collecting a few real food slicing data, calibrating our dual simulation environment (a high-fidelity cutting simulator and a robotic simulator), learning compliant control policies on the calibrated simulation environment, and finally, deploying the policies on the real robot.
- Abstract(参考訳): 調理ロボットは、日常の雑用の負担を軽減し、家庭での体験を向上させることができる。
しかし、これらのロボットは、特にキッチンナイフのような危険な道具を扱う場合、共有された人間の環境において、きめ細やかに安全にタスクを実行する必要がある。
本研究は、ロボットが自律的かつ安全に食品切断タスクを学習できるようにすることに焦点を当てる。
より具体的には、協調ロボットや産業用ロボットアームが、コンプライアンス制御を用いて様々な材料特性に適応して食品スライシングタスクを実行できるようにすることが目的である。
我々のアプローチは、強化学習(Reinforcement Learning, RL)を用いて、ロボットにナイフを忠実に操作するよう訓練することであり、食品や切削板に作用する接触力を減少させることである。
しかし、現実の世界でロボットを訓練することは非効率であり、危険であり、結果として多くの食品廃棄物が発生する。
そこで我々は,シミュレーションにおけるロボット食品スライシングタスクを安全かつ効率的に学習するフレームワークであるSliceIt!を提案した。
リアルな2sim2realアプローチに従って、我々のフレームワークは、実際の食品スライシングデータを収集し、二重シミュレーション環境(高忠実な切削シミュレータとロボットシミュレータ)を校正し、校正されたシミュレーション環境に準拠する制御ポリシーを学習し、最終的に実際のロボットにポリシーをデプロイする。
関連論文リスト
- RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Fault-Aware Robust Control via Adversarial Reinforcement Learning [35.16413579212691]
本稿では, 関節損傷症例に対するロボットの脆弱性を大幅に向上させる, 対向強化学習フレームワークを提案する。
我々は,本アルゴリズムを3本指ロボットと4本指ロボットで検証する。
我々のアルゴリズムはシミュレーションでのみ訓練でき、微調整なしで実際のロボットに直接展開できる。
論文 参考訳(メタデータ) (2020-11-17T16:01:06Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
本稿では,ロボットによる深層強化学習を向上するためのオープンソースのツールキット,robo-gymを提案する。
シミュレーションにおけるトレーニングからロボットへのシームレスな移動を可能にするシミュレーション環境と実環境の統一的なセットアップを実証する。
産業用ロボットを特徴とする2つの実世界アプリケーションを用いて,本フレームワークの能力と有効性を示す。
論文 参考訳(メタデータ) (2020-07-06T13:51:33Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。