Active learning for efficient annotation in precision agriculture: a use-case on crop-weed semantic segmentation
- URL: http://arxiv.org/abs/2404.02580v1
- Date: Wed, 3 Apr 2024 08:55:44 GMT
- Title: Active learning for efficient annotation in precision agriculture: a use-case on crop-weed semantic segmentation
- Authors: Bart M. van Marrewijk, Charbel Dandjinou, Dan Jeric Arcega Rustia, Nicolas Franco Gonzalez, Boubacar Diallo, Jérôme Dias, Paul Melki, Pieter M. Blok,
- Abstract summary: Active learning facilitates the identification and selection of the most informative images from a large unlabelled pool.
While active learning has demonstrated promising results on benchmark datasets like Cityscapes, its performance in the agricultural domain remains largely unexplored.
This study addresses this research gap by conducting a comparative study of three active learning-based acquisition functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Optimizing deep learning models requires large amounts of annotated images, a process that is both time-intensive and costly. Especially for semantic segmentation models in which every pixel must be annotated. A potential strategy to mitigate annotation effort is active learning. Active learning facilitates the identification and selection of the most informative images from a large unlabelled pool. The underlying premise is that these selected images can improve the model's performance faster than random selection to reduce annotation effort. While active learning has demonstrated promising results on benchmark datasets like Cityscapes, its performance in the agricultural domain remains largely unexplored. This study addresses this research gap by conducting a comparative study of three active learning-based acquisition functions: Bayesian Active Learning by Disagreement (BALD), stochastic-based BALD (PowerBALD), and Random. The acquisition functions were tested on two agricultural datasets: Sugarbeet and Corn-Weed, both containing three semantic classes: background, crop and weed. Our results indicated that active learning, especially PowerBALD, yields a higher performance than Random sampling on both datasets. But due to the relatively large standard deviations, the differences observed were minimal; this was partly caused by high image redundancy and imbalanced classes. Specifically, more than 89\% of the pixels belonged to the background class on both datasets. The absence of significant results on both datasets indicates that further research is required for applying active learning on agricultural datasets, especially if they contain a high-class imbalance and redundant images. Recommendations and insights are provided in this paper to potentially resolve such issues.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
We present MoBYv2AL, a novel self-supervised active learning framework for image classification.
Our contribution lies in lifting MoBY, one of the most successful self-supervised learning algorithms, to the AL pipeline.
We achieve state-of-the-art results when compared to recent AL methods.
arXiv Detail & Related papers (2023-01-04T10:52:02Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Improving Tail-Class Representation with Centroid Contrastive Learning [145.73991900239017]
We propose interpolative centroid contrastive learning (ICCL) to improve long-tailed representation learning.
ICCL interpolates two images from a class-agnostic sampler and a class-aware sampler, and trains the model such that the representation of the ICCL can be used to retrieve the centroids for both source classes.
Our result shows a significant accuracy gain of 2.8% on the iNaturalist 2018 dataset with a real-world long-tailed distribution.
arXiv Detail & Related papers (2021-10-19T15:24:48Z) - Class-Balanced Active Learning for Image Classification [29.5211685759702]
We propose a general optimization framework that explicitly takes class-balancing into account.
Results on three datasets showed that the method is general (it can be combined with most existing active learning algorithms) and can be effectively applied to boost the performance of both informative and representative-based active learning methods.
arXiv Detail & Related papers (2021-10-09T11:30:26Z) - Few-Shot Learning for Image Classification of Common Flora [0.0]
We will showcase our results from testing various state-of-the-art transfer learning weights and architectures versus similar state-of-the-art works in the meta-learning field for image classification utilizing Model-Agnostic Meta Learning (MAML)
Our results show that both practices provide adequate performance when the dataset is sufficiently large, but that they both also struggle when data sparsity is introduced to maintain sufficient performance.
arXiv Detail & Related papers (2021-05-07T03:54:51Z) - Diminishing Uncertainty within the Training Pool: Active Learning for
Medical Image Segmentation [6.3858225352615285]
We explore active learning for the task of segmentation of medical imaging data sets.
We propose three new strategies for active learning: increasing frequency of uncertain data to bias the training data set, using mutual information among the input images as a regularizer and adaptation of Dice log-likelihood for Stein variational gradient descent (SVGD)
The results indicate an improvement in terms of data reduction by achieving full accuracy while only using 22.69 % and 48.85 % of the available data for each dataset, respectively.
arXiv Detail & Related papers (2021-01-07T01:55:48Z) - How useful is Active Learning for Image-based Plant Phenotyping? [7.056477977834818]
We propose active learning algorithms that reduce the amount of labeling needed by deep learning models to achieve good predictive performance.
Active learning methods adaptively select samples to annotate using an acquisition function to achieve maximum (classification) performance under a fixed labeling budget.
For a fixed labeling budget, we observed that the classification performance of deep learning models with active learning-based acquisition strategies is better than random sampling-based acquisition for both datasets.
arXiv Detail & Related papers (2020-06-07T20:32:42Z) - Reinforced active learning for image segmentation [34.096237671643145]
We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL)
An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled from a pool of unlabeled data.
Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems.
arXiv Detail & Related papers (2020-02-16T14:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.