論文の概要: Calibrating the Confidence of Large Language Models by Eliciting Fidelity
- arxiv url: http://arxiv.org/abs/2404.02655v1
- Date: Wed, 3 Apr 2024 11:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:40:49.827843
- Title: Calibrating the Confidence of Large Language Models by Eliciting Fidelity
- Title(参考訳): 忠実度を緩和した大規模言語モデルの信頼性の校正
- Authors: Mozhi Zhang, Mianqiu Huang, Rundong Shi, Linsen Guo, Chong Peng, Peng Yan, Yaqian Zhou, Xipeng Qiu,
- Abstract要約: RLHFのようなテクニックで最適化された大規模な言語モデルは、有用で無害な点において優れた整合性を実現している。
調整後、これらの言語モデルはしばしば過剰な自信を示し、表現された自信は正確さの度合いで正確に校正しない。
本稿では,言語モデルの信頼度を推定するプラグイン・アンド・プレイ手法を提案する。
- 参考スコア(独自算出の注目度): 52.47397325111864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless. However, post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate. In this paper, we decompose the language model confidence into the \textit{Uncertainty} about the question and the \textit{Fidelity} to the answer generated by language models. Then, we propose a plug-and-play method to estimate the confidence of language models. Our method has shown good calibration performance by conducting experiments with 6 RLHF-LMs on four MCQA datasets. Moreover, we propose two novel metrics, IPR and CE, to evaluate the calibration of the model, and we have conducted a detailed discussion on \textit{Truly Well-Calibrated Confidence}. Our method could serve as a strong baseline, and we hope that this work will provide some insights into the model confidence calibration.
- Abstract(参考訳): RLHFのようなテクニックで最適化された大規模な言語モデルは、有用で無害な点において優れた整合性を実現している。
しかし、アライメント後、これらの言語モデルはしばしば過剰な自信を示し、表現された信頼度はその正確さで正確に校正されない。
本稿では,言語モデルの信頼性を,言語モデルが生成した質問に対する「textit{Uncertainty}」と「textit{Fidelity}」に分解する。
そこで本研究では,言語モデルの信頼性を推定するプラグイン・アンド・プレイ手法を提案する。
4つのMCQAデータセット上で6つのRLHF-LMを用いて実験を行い,良好な校正性能を示した。
さらに,モデルのキャリブレーションを評価するために,IPRとCEという2つの新しい指標を提案する。
我々の手法は強力なベースラインとして機能する可能性があり、この研究がモデルの信頼性校正に関する洞察を与えてくれることを願っている。
関連論文リスト
- Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - $C^3$: Confidence Calibration Model Cascade for Inference-Efficient
Cross-Lingual Natural Language Understanding [28.853593305486832]
言語間自然言語理解(NLU)は自然言語処理(NLP)において重要な課題である
近年,多言語事前学習言語モデル (mPLM) の進歩により,これらのタスクの性能が著しく向上している。
既存のモデルカスケード法は、様々なモデルから電流入力を処理できる最も軽量なモデルを選択して、推論効率を向上させる。
論文 参考訳(メタデータ) (2024-02-25T05:07:56Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
大きな言語モデル(LLM)の信頼性スコアは、その応答が正しいという実際の可能性と一致すべきである。
現在の信頼性評価手法とキャリブレーション基準は、応答の正しさを2値の真/偽評価に頼っている。
本稿では,LLMの応答の正しさと関連する信頼度の両方を,様々なスコアの分布として扱う統一校正フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-09T17:00:32Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
信頼性キャリブレーションは、ディープモデルの信頼性を高める重要なツールである。
構築プロセス全体を通して、アライメント言語モデルの校正を体系的に検討する。
我々の研究は、人気のあるLCMが十分に校正されているか、トレーニングプロセスがモデルの校正にどのように影響するかに光を当てています。
論文 参考訳(メタデータ) (2023-11-22T08:57:55Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
大規模な事前訓練型言語モデル(LLM)は、しばしば伝統的な検索エンジンの代替として、広く使われるようになった。
しかし、言語モデルは説得力のあるが事実的に不正確な主張をしがちである(しばしば「幻覚」と呼ばれる)。
本研究では,人間のラベル付けなしに,より現実的な言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-14T18:59:15Z) - Ask Again, Then Fail: Large Language Models' Vacillations in Judgment [28.74246375289661]
我々は、現在の会話言語モデルが、フォローアップされた質問に直面すると、判断を揺るがすことが多いことを観察する。
我々は、この矛盾を定量化するための2つの指標とともに、textscFollow-up Questioning Mechanismを紹介した。
トレーニングベースのフレームワーク TextscUnwavering-FQ を開発した。
論文 参考訳(メタデータ) (2023-10-03T16:08:41Z) - Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
Scores from Language Models Fine-Tuned with Human Feedback [91.22679548111127]
信頼できる現実世界の予測システムは、よく校正された信頼スコアを生成するべきである。
出力トークンとして出力される言語的信頼度は、通常、モデルの条件付き確率よりも良く校正されていることを示す。
論文 参考訳(メタデータ) (2023-05-24T10:12:33Z) - How Can We Know When Language Models Know? On the Calibration of
Language Models for Question Answering [80.82194311274694]
言語モデルがいつ、自信を持って、特定のクエリに対する答えを知っているか、どのように知ることができるか?
我々は,T5,BART,GPT-2の3つの強力な生成モデルを検討した。
次に、そのようなモデルの校正方法を検討し、その信頼性スコアを正しさの確率と相関させる。
論文 参考訳(メタデータ) (2020-12-02T03:53:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。