Demonstration of weighted graph optimization on a Rydberg atom array using local light-shifts
- URL: http://arxiv.org/abs/2404.02658v2
- Date: Fri, 23 Aug 2024 12:11:44 GMT
- Title: Demonstration of weighted graph optimization on a Rydberg atom array using local light-shifts
- Authors: A. G. de Oliveira, E. Diamond-Hitchcock, D. M. Walker, M. T. Wells-Pestell, G. PelegrÃ, C. J. Picken, G. P. A. Malcolm, A. J. Daley, J. Bass, J. D. Pritchard,
- Abstract summary: We present first demonstrations of weighted graph optimization on a Rydberg atom array.
We verify the ability to prepare weighted graphs in 1D and 2D arrays.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neutral atom arrays have emerged as a versatile platform towards scalable quantum computation and optimization. In this paper we present first demonstrations of weighted graph optimization on a Rydberg atom array using annealing with local light-shifts. We verify the ability to prepare weighted graphs in 1D and 2D arrays, including embedding a five vertex non-unit disk graph using nine physical qubits and demonstration of a simple crossing gadget. We find common annealing ramps leading to preparation of the target ground state robustly over a substantial range of different graph weightings. This work provides a route to exploring large-scale optimization of non-planar weighted graphs relevant for solving relevant real-world problems.
Related papers
- Quantum adiabatic optimization with Rydberg arrays: localization phenomena and encoding strategies [0.9500919522633157]
We study the quantum dynamics of the encoding scheme proposed in [Nguyen et al., PRX Quantum 4, 010316 (2023)
We look at minimum gap scaling with system size along adiabatic protocols.
We observe such localization and its effect on the success probability of finding the correct solution.
arXiv Detail & Related papers (2024-11-07T12:10:01Z) - Encoder Embedding for General Graph and Node Classification [4.178980693837599]
We prove that the encoder embedding matrices satisfies the law of large numbers and the central limit theorem on a per-observation basis.
Under certain condition, it achieves normality on a per-class basis, enabling optimal classification through discriminant analysis.
arXiv Detail & Related papers (2024-05-24T11:51:08Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Distributed Graph Embedding with Information-Oriented Random Walks [16.290803469068145]
Graph embedding maps graph nodes to low-dimensional vectors, and is widely adopted in machine learning tasks.
We present a general-purpose, distributed, information-centric random walk-based graph embedding framework, DistGER, which can scale to embed billion-edge graphs.
D DistGER exhibits 2.33x-129x acceleration, 45% reduction in cross-machines communication, and > 10% effectiveness improvement in downstream tasks.
arXiv Detail & Related papers (2023-03-28T03:11:21Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
We present three methods that exploit the induced graphon representation of graphs and graph signals on partitions of [0, 1]2 in the graphon space.
We prove that those low dimensional representations constitute a convergent sequence of graphs and graph signals.
We observe that graphon pooling performs significantly better than other approaches proposed in the literature when dimensionality reduction ratios between layers are large.
arXiv Detail & Related papers (2022-12-15T22:11:34Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
A new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas.
Based on E-Graph, the rotation estimation problem becomes simpler and more elegant.
We embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model.
arXiv Detail & Related papers (2022-07-20T16:11:48Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation.
We introduce OT-GNN, a model that computes graph embeddings using parametric prototypes.
arXiv Detail & Related papers (2020-06-08T14:57:39Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.