Demonstration of weighted graph optimization on a Rydberg atom array using local light-shifts
- URL: http://arxiv.org/abs/2404.02658v3
- Date: Thu, 05 Dec 2024 16:20:58 GMT
- Title: Demonstration of weighted graph optimization on a Rydberg atom array using local light-shifts
- Authors: A. G. de Oliveira, E. Diamond-Hitchcock, D. M. Walker, M. T. Wells-Pestell, G. PelegrÃ, C. J. Picken, G. P. A. Malcolm, A. J. Daley, J. Bass, J. D. Pritchard,
- Abstract summary: We present demonstrations of solving maximum weighted independent set problems on a Rydberg atom array.
We verify the ability to prepare weighted graphs in 1D and 2D arrays.
- Score: 0.0
- License:
- Abstract: Neutral atom arrays have emerged as a versatile platform towards scalable quantum computation and optimization. In this paper we present demonstrations of solving maximum weighted independent set problems on a Rydberg atom array using annealing with local light-shifts. We verify the ability to prepare weighted graphs in 1D and 2D arrays, including embedding a five vertex non-unit disk graph using nine physical qubits and demonstration of a simple crossing gadget. We find common annealing ramps leading to preparation of the target ground state robustly over a substantial range of different graph weightings. This work provides a route to exploring large-scale optimization of non-planar weighted graphs relevant for solving relevant real-world problems.
Related papers
- Quantum adiabatic optimization with Rydberg arrays: localization phenomena and encoding strategies [0.9500919522633157]
We study the quantum dynamics of the encoding scheme proposed in [Nguyen et al., PRX Quantum 4, 010316 (2023)
We look at minimum gap scaling with system size along adiabatic protocols.
We observe such localization and its effect on the success probability of finding the correct solution.
arXiv Detail & Related papers (2024-11-07T12:10:01Z) - Generation of quantum phases of matter and finding a maximum-weight independent set of unit-disk graphs using Rydberg atoms [4.619601221994331]
We study the problem of a maximum-weight independent set of unit-disk graphs using Rydberg excitation.
We consider driving the quantum system of interacting atoms to the many-body ground state using a non-linear quasi-adiabatic profile for sweeping the Rydberg detuning.
We also investigate the quantum phases of matter realizing commensurate and incommensurate phases in one- and two-dimensional spatial arrangements of the atomic array.
arXiv Detail & Related papers (2024-05-16T04:23:17Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Rydberg-atom graphs for quadratic unconstrained binary optimization
problems [0.3562485774739681]
We present an experimental demonstration of how the quadratic unconstrained binary optimization problem can be effectively addressed using Rydbergatom graphs.
The Rydberg-atom graphs are configurations of neutral atoms into mathematical graphs facilitated by programmable optical tweezers.
arXiv Detail & Related papers (2023-09-26T11:22:38Z) - Solving optimization problems with local light shift encoding on Rydberg
quantum annealers [0.0]
We provide a non-unit disk framework to solve optimization problems on a Rydberg quantum annealer.
Our setup consists of a many-body interacting Rydberg system where locally controllable light shifts are applied to individual qubits.
Our numerical simulations implement the local-detuning protocol while globally driving the Rydberg annealer to the desired many-body ground state.
arXiv Detail & Related papers (2023-08-15T14:24:45Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
A new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas.
Based on E-Graph, the rotation estimation problem becomes simpler and more elegant.
We embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model.
arXiv Detail & Related papers (2022-07-20T16:11:48Z) - Rydberg Quantum Wires for Maximum Independent Set Problems with
Nonplanar and High-Degree Graphs [0.7046417074932257]
We present experiments with Rydberg atoms to solve non-deterministic-time hard (NP-hard) problems.
We introduce the Rydberg quantum wire scheme with auxiliary atoms to engineer long-ranged networks of qubit atoms.
Three-dimensional (3D) Rydberg-atom arrays are constructed, overcoming the intrinsic limitations of two-dimensional arrays.
arXiv Detail & Related papers (2021-09-08T09:37:18Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.