A Satellite Band Selection Framework for Amazon Forest Deforestation Detection Task
- URL: http://arxiv.org/abs/2404.02659v1
- Date: Wed, 3 Apr 2024 11:47:20 GMT
- Title: A Satellite Band Selection Framework for Amazon Forest Deforestation Detection Task
- Authors: Eduardo Neto, Fabio A. Faria, Amanda A. S. de Oliveira, Álvaro L. Fazenda,
- Abstract summary: Deforestation and degradation impact millions of hectares annually, necessitating government or private initiatives for effective forest monitoring.
This study introduces a novel framework that employs the Univariate Marginal Distribution Algorithm (UMDA) to select spectral bands from Landsat-8 satellite.
This selection guides a semantic segmentation architecture, DeepLabv3+, enhancing its performance.
- Score: 0.5825410941577593
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The conservation of tropical forests is a topic of significant social and ecological relevance due to their crucial role in the global ecosystem. Unfortunately, deforestation and degradation impact millions of hectares annually, necessitating government or private initiatives for effective forest monitoring. This study introduces a novel framework that employs the Univariate Marginal Distribution Algorithm (UMDA) to select spectral bands from Landsat-8 satellite, optimizing the representation of deforested areas. This selection guides a semantic segmentation architecture, DeepLabv3+, enhancing its performance. Experimental results revealed several band compositions that achieved superior balanced accuracy compared to commonly adopted combinations for deforestation detection, utilizing segment classification via a Support Vector Machine (SVM). Moreover, the optimal band compositions identified by the UMDA-based approach improved the performance of the DeepLabv3+ architecture, surpassing state-of-the-art approaches compared in this study. The observation that a few selected bands outperform the total contradicts the data-driven paradigm prevalent in the deep learning field. Therefore, this suggests an exception to the conventional wisdom that 'more is always better'.
Related papers
- Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation [2.3429628556845405]
Fine-tuning of a geospatial foundation model to estimate above-ground biomass has comparable performance to a U-Net trained from scratch.
We also explore the transfer-learning capabilities of the models by fine-tuning on satellite imagery with sparse labels from different eco-regions in Brazil.
arXiv Detail & Related papers (2024-06-28T12:54:10Z) - A Framework of Landsat-8 Band Selection based on UMDA for Deforestation
Detection [1.3654846342364308]
This work proposes a novel framework, which uses of distribution estimation algorithm (UMDA) to select spectral bands from Landsat-8 that yield a better representation of deforestation areas.
In performed experiments, it was possible to find several compositions that reach balanced accuracy superior to 90% in segment classification tasks.
arXiv Detail & Related papers (2023-11-17T13:34:58Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
We describe a simple and effective forest-based method set called em ForensicsForest Family to detect GAN-generate faces.
ForenscisForest is a newly proposed Multi-scale Hierarchical Cascade Forest.
Hybrid ForensicsForest integrates the CNN layers into models.
Divide-and-Conquer ForensicsForest can construct a forest model using only a portion of training samplings.
arXiv Detail & Related papers (2023-08-02T06:41:19Z) - OptIForest: Optimal Isolation Forest for Anomaly Detection [19.38817835115542]
A category based on the isolation forest mechanism stands out due to its simplicity, effectiveness, and efficiency.
In this paper, we establish a theory on isolation efficiency to answer the question and determine the optimal branching factor for an isolation tree.
Based on the theoretical underpinning, we design a practical optimal isolation forest OptIForest incorporating clustering based learning to hash.
arXiv Detail & Related papers (2023-06-22T07:14:02Z) - The Second Monocular Depth Estimation Challenge [93.1678025923996]
The second edition of the Monocular Depth Estimation Challenge (MDEC) was open to methods using any form of supervision.
The challenge was based around the SYNS-Patches dataset, which features a wide diversity of environments with high-quality dense ground-truth.
The top supervised submission improved relative F-Score by 27.62%, while the top self-supervised improved it by 16.61%.
arXiv Detail & Related papers (2023-04-14T11:10:07Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Comparative Study Between Distance Measures On Supervised Optimum-Path
Forest Classification [0.0]
Optimum-Path Forest (OPF) uses a graph-based methodology and a distance measure to create arcs between nodes and hence sets of trees.
This work proposes a comparative study over a wide range of distance measures applied to the supervised Optimum-Path Forest classification.
arXiv Detail & Related papers (2022-02-08T13:34:09Z) - Reenvisioning Collaborative Filtering vs Matrix Factorization [65.74881520196762]
Collaborative filtering models based on matrix factorization and learned similarities using Artificial Neural Networks (ANNs) have gained significant attention in recent years.
Announcement of ANNs within the recommendation ecosystem has been recently questioned, raising several comparisons in terms of efficiency and effectiveness.
We show the potential these techniques may have on beyond-accuracy evaluation while analyzing effect on complementary evaluation dimensions.
arXiv Detail & Related papers (2021-07-28T16:29:38Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.