Mixing Individual and Collective Behaviours to Predict Out-of-Routine Mobility
- URL: http://arxiv.org/abs/2404.02740v2
- Date: Tue, 6 Aug 2024 10:09:10 GMT
- Title: Mixing Individual and Collective Behaviours to Predict Out-of-Routine Mobility
- Authors: Sebastiano Bontorin, Simone Centellegher, Riccardo Gallotti, Luca Pappalardo, Bruno Lepri, Massimiliano Luca,
- Abstract summary: This study introduces an approach that dynamically integrates individual and collective mobility behaviours.
We demonstrate its superior performance in predicting out-of-routine mobility, surpassing even advanced deep learning methods.
By bridging the gap between individual and collective behaviours, our approach offers transparent and accurate predictions.
- Score: 4.442030973972382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting human displacements is crucial for addressing various societal challenges, including urban design, traffic congestion, epidemic management, and migration dynamics. While predictive models like deep learning and Markov models offer insights into individual mobility, they often struggle with out-of-routine behaviours. Our study introduces an approach that dynamically integrates individual and collective mobility behaviours, leveraging collective intelligence to enhance prediction accuracy. Evaluating the model on millions of privacy-preserving trajectories across three US cities, we demonstrate its superior performance in predicting out-of-routine mobility, surpassing even advanced deep learning methods. Spatial analysis highlights the model's effectiveness near urban areas with a high density of points of interest, where collective behaviours strongly influence mobility. During disruptive events like the COVID-19 pandemic, our model retains predictive capabilities, unlike individual-based models. By bridging the gap between individual and collective behaviours, our approach offers transparent and accurate predictions, crucial for addressing contemporary mobility challenges.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction [6.0588503913405045]
We propose a robust approach to predict human mobility patterns called ST-MoE-BERT.
Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics.
We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods.
arXiv Detail & Related papers (2024-10-18T00:32:18Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - Human Mobility Modeling with Limited Information via Large Language Models [11.90100976089832]
We propose an innovative Large Language Model (LLM) empowered human mobility modeling framework.
Our proposed approach significantly reduces the reliance on detailed human mobility statistical data.
We have validated our results using the NHTS and SCAG-ABM datasets.
arXiv Detail & Related papers (2024-09-26T03:07:32Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
We introduce RatPose, a bio-robot motion prediction dataset constructed by considering the influence factors of individuals and environments.
We propose a Dual-stream Motion-Scenario Decoupling framework that effectively separates scenario-oriented and motion-oriented features.
We demonstrate significant performance improvements of the proposed textitDMSD framework on different difficulty-level tasks.
arXiv Detail & Related papers (2023-05-17T14:14:31Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Predicting Human Mobility via Self-supervised Disentanglement Learning [21.61423193132924]
We propose a novel disentangled solution called SSDL for tackling the next POI prediction problem.
We present two realistic trajectory augmentation approaches to enhance the understanding of both the human intrinsic periodicity and constantly-changing intents.
Extensive experiments conducted on four real-world datasets demonstrate that our proposed SSDL significantly outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-17T16:17:22Z) - Dynamic predictability and spatio-temporal contexts in human mobility [0.5748187237966766]
We study how individual-level mobility patterns carry a large degree of information regarding the nature of the regularities in mobility.
Our findings indicate the existence of contextual and activity signatures in predictability states, pointing towards the potential for more sophisticated, data-driven approaches to short-term, higher-order mobility predictions.
arXiv Detail & Related papers (2022-01-04T23:11:14Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.