論文の概要: Generative-Contrastive Heterogeneous Graph Neural Network
- arxiv url: http://arxiv.org/abs/2404.02810v1
- Date: Wed, 3 Apr 2024 15:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:01:36.461813
- Title: Generative-Contrastive Heterogeneous Graph Neural Network
- Title(参考訳): 生成コントラスト不均質グラフニューラルネット
- Authors: Yu Wang, Lei Sang, Yi Zhang, Yiwen Zhang,
- Abstract要約: 異種グラフ(HG)は、実世界の複雑な関係をマルチタイプのノードとエッジによって効果的にモデル化することができる。
近年、自己教師型学習にインスパイアされた異種グラフニューラルネットワーク(HGNN)は、下流タスクにデータ拡張と識別器を活用することで大きな可能性を示している。
- 参考スコア(独自算出の注目度): 11.118517297006894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges. In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and discriminators for downstream tasks. However, data augmentation is still limited due to the discrete and abstract nature of graphs. To tackle the above limitations, we propose a novel \textit{Generative-Contrastive Heterogeneous Graph Neural Network (GC-HGNN)}. Specifically, we first propose a heterogeneous graph generative learning enhanced contrastive paradigm. This paradigm includes: 1) A contrastive view augmentation strategy by using masked autoencoder. 2) Position-aware and semantics-aware positive sample sampling strategy for generate hard negative samples. 3) A hierarchical contrastive learning strategy for capturing local and global information. Furthermore, the hierarchical contrastive learning and sampling strategies aim to constitute an enhanced discriminator under the generative-contrastive perspective. Finally, we compare our model with seventeen baselines on eight real-world datasets. Our model outperforms the latest contrastive and generative baselines on node classification and link prediction tasks. To reproduce our work, we have open-sourced our code at https://github.com/xxx.
- Abstract(参考訳): 異種グラフ(HG)は、実世界の複雑な関係をマルチタイプのノードとエッジによって効果的にモデル化することができる。
近年、自己教師型学習にインスパイアされた異種グラフニューラルネットワーク(HGNN)は、下流タスクにデータ拡張と識別器を活用することで大きな可能性を示している。
しかし、グラフの離散的で抽象的な性質のため、データの増大はまだ限られている。
上記の制約に対処するため,新しいヘテロジニアスグラフニューラルネットワーク(GC-HGNN)を提案する。
具体的には、まず、異種グラフ生成学習強化コントラストパラダイムを提案する。
このパラダイムには以下のものがある。
1)マスク付きオートエンコーダによるコントラストビュー増強戦略
2) 固い負のサンプルを生成するために, 位置認識と意味認識を意識した正のサンプル採取戦略。
3)地域情報とグローバル情報を取得するための階層的コントラスト学習戦略。
さらに、階層的コントラスト学習とサンプリング戦略は、生成的コントラストの観点からの差別化の強化を目的としている。
最後に、我々のモデルを8つの実世界のデータセット上で17のベースラインと比較する。
本モデルは,ノード分類およびリンク予測タスクにおいて,最新のコントラストベースラインおよび生成ベースラインより優れる。
私たちの作業を再現するため、私たちはhttps://github.com/xxx.comでコードをオープンソース化しました。
関連論文リスト
- M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive
Learning [16.391439666603578]
マルチスケールなメタパス統合ヘテロジニアスグラフコントラスト学習(M2HGCL)モデルを提案する。
具体的には、メタパスを拡大し、直接的な隣接情報、初期メタパス隣情報、拡張されたメタパス隣情報とを共同で集約する。
3つの実世界のデータセットに関する広範な実験を通して、M2HGCLが現在の最先端のベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-03T06:39:56Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、異種情報ネットワーク(HIN)を扱う能力に優れていた。
近年,自己指導型学習は最もエキサイティングな学習パラダイムの1つとなり,ラベルがない場合に大きな可能性を示す。
本稿では,自己教師型HGNNの問題点を考察し,HGNNのための新しいコントラスト学習機構であるHeCoを提案する。
論文 参考訳(メタデータ) (2023-04-24T16:17:21Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - Coarse-to-Fine Contrastive Learning on Graphs [38.41992365090377]
ノード表現を自己管理的に学習するために、さまざまなグラフ拡張戦略が採用されている。
我々は,異なるノード間の識別情報を確実に維持するために,自己評価パラダイムを導入する。
各種ベンチマークデータセットの実験結果から,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2022-12-13T08:17:20Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs [26.191673964156585]
本稿では,大規模不均一グラフ表現学習のためのRelation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO)を提案する。
RHCOは最先端のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-11-20T04:45:04Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIELは、ノードレベルとグラフレベルの両方の分類タスクにおいて、現在のグラフコントラスト学習法よりも一貫して優れている。
ARIELは敵の攻撃に対してより堅牢である。
論文 参考訳(メタデータ) (2022-08-15T01:24:42Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。