論文の概要: RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs
- arxiv url: http://arxiv.org/abs/2211.11752v1
- Date: Sun, 20 Nov 2022 04:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 16:51:00.081303
- Title: RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs
- Title(参考訳): RHCO:大規模グラフに対するコントラスト学習を用いた関係認識不均一グラフニューラルネットワーク
- Authors: Ziming Wan, Deqing Wang, Xuehua Ming, Fuzhen Zhuang, Chenguang Du,
Ting Jiang, Zhengyang Zhao
- Abstract要約: 本稿では,大規模不均一グラフ表現学習のためのRelation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO)を提案する。
RHCOは最先端のモデルよりも優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 26.191673964156585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graph neural networks (HGNNs) have been widely applied in
heterogeneous information network tasks, while most HGNNs suffer from poor
scalability or weak representation when they are applied to large-scale
heterogeneous graphs. To address these problems, we propose a novel
Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning
(RHCO) for large-scale heterogeneous graph representation learning. Unlike
traditional heterogeneous graph neural networks, we adopt the contrastive
learning mechanism to deal with the complex heterogeneity of large-scale
heterogeneous graphs. We first learn relation-aware node embeddings under the
network schema view. Then we propose a novel positive sample selection strategy
to choose meaningful positive samples. After learning node embeddings under the
positive sample graph view, we perform a cross-view contrastive learning to
obtain the final node representations. Moreover, we adopt the label smoothing
technique to boost the performance of RHCO. Extensive experiments on three
large-scale academic heterogeneous graph datasets show that RHCO achieves best
performance over the state-of-the-art models.
- Abstract(参考訳): ヘテロジニアスグラフニューラルネットワーク(HGNN)は異種情報ネットワークのタスクに広く応用されているが、多くのHGNNは大規模な異種グラフに適用された場合、スケーラビリティの低下や表現の弱さに悩まされている。
このような問題に対処するために,大規模な異種グラフ表現学習のためのRHCO(Relation-aware Heterogeneous Graph Neural Network)を提案する。
従来の異種グラフニューラルネットワークとは異なり、大規模な異種グラフの複雑な異種性を扱うために、対照的な学習機構を採用する。
まず、ネットワークスキーマビュー下で関係認識ノードの埋め込みを学習する。
次に,有意義な正のサンプルを選択するための新しい正のサンプル選択戦略を提案する。
正のサンプルグラフビュー下でノード埋め込みを学習した後、最終ノード表現を得るためにクロスビューコントラスト学習を行う。
さらに,RHCOの性能向上のためにラベル平滑化手法を採用した。
3つの大規模学術異種グラフデータセットに関する広範な実験は、rhcoが最先端モデルよりも優れた性能を達成していることを示している。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - Generative-Enhanced Heterogeneous Graph Contrastive Learning [11.118517297006894]
異種グラフ(HG)は、実世界の複雑な関係をマルチタイプのノードとエッジによって効果的にモデル化することができる。
近年、自己教師型学習にインスパイアされたHGNN(Heterogeneous Graphs Neural Networks)は、下流タスクにデータ拡張とコントラッシブ・ディミネータを活用することで大きな可能性を示している。
本稿では,GHGCL(Generative-Enhanced Heterogeneous Graph Contrastive Learning)を提案する。
論文 参考訳(メタデータ) (2024-04-03T15:31:18Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Meta-path Free Semi-supervised Learning for Heterogeneous Networks [16.641434334366227]
グラフニューラルネットワーク(GNN)はグラフの表現学習に広く使われており、ノード分類などのタスクにおいて優れたパフォーマンスを実現している。
本稿では,メタパスを除く異種グラフに対して,単純かつ効率的なグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-18T06:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。