A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches
- URL: http://arxiv.org/abs/2404.02817v5
- Date: Mon, 07 Oct 2024 10:09:16 GMT
- Title: A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches
- Authors: Zhigen Zhao, Shuo Cheng, Yan Ding, Ziyi Zhou, Shiqi Zhang, Danfei Xu, Ye Zhao,
- Abstract summary: Task and Motion Planning (TAMP) integrates high-level task planning and low-level motion planning to equip robots with the autonomy to reason over long-horizon, dynamic tasks.
This survey provides a comprehensive review on optimization-based TAMP, covering (i) planning domain representations, (ii) individual solution strategies for components, including AI planning and trajectory optimization (TO), and (iii) the dynamic interplay between logic-based task planning and model-based TO.
- Score: 15.136760934936381
- License:
- Abstract: Task and Motion Planning (TAMP) integrates high-level task planning and low-level motion planning to equip robots with the autonomy to effectively reason over long-horizon, dynamic tasks. Optimization-based TAMP focuses on hybrid optimization approaches that define goal conditions via objective functions and are capable of handling open-ended goals, robotic dynamics, and physical interaction between the robot and the environment. Therefore, optimization-based TAMP is particularly suited to solve highly complex, contact-rich locomotion and manipulation problems. This survey provides a comprehensive review on optimization-based TAMP, covering (i) planning domain representations, including action description languages and temporal logic, (ii) individual solution strategies for components of TAMP, including AI planning and trajectory optimization (TO), and (iii) the dynamic interplay between logic-based task planning and model-based TO. A particular focus of this survey is to highlight the algorithm structures to efficiently solve TAMP, especially hierarchical and distributed approaches. Additionally, the survey emphasizes the synergy between the classical methods and contemporary learning-based innovations such as large language models. Furthermore, the future research directions for TAMP is discussed in this survey, highlighting both algorithmic and application-specific challenges.
Related papers
- Generalization of Compositional Tasks with Logical Specification via Implicit Planning [14.46490764849977]
We introduce a new hierarchical RL framework that enhances the efficiency and optimality of task generalization.
At the high level, we present an implicit planner specifically designed for generalizing compositional tasks.
It learns a latent transition model and performs planning in the latent space by using a graph neural network (GNN)
arXiv Detail & Related papers (2024-10-13T00:57:10Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [89.68433168477227]
Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular.
This paper investigates enhancing the planning abilities of LLMs through instruction tuning.
To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - Transformer-Enhanced Motion Planner: Attention-Guided Sampling for State-Specific Decision Making [6.867637277944729]
Transformer-Enhanced Motion Planner (TEMP) is a novel deep learning-based motion planning framework.
TEMP synergizes an Environmental Information Semantic (EISE) with a Motion Planning Transformer (MPT)
arXiv Detail & Related papers (2024-04-30T09:48:11Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation.
Here, we present LLM3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface.
Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning.
arXiv Detail & Related papers (2024-03-18T08:03:47Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought [95.37585041654535]
Embodied AI is capable of planning and executing action sequences for robots to accomplish long-horizon tasks in physical environments.
In this work, we introduce EmbodiedGPT, an end-to-end multi-modal foundation model for embodied AI.
Experiments show the effectiveness of EmbodiedGPT on embodied tasks, including embodied planning, embodied control, visual captioning, and visual question answering.
arXiv Detail & Related papers (2023-05-24T11:04:30Z) - Learning Symbolic Operators for Task and Motion Planning [29.639902380586253]
integrated task and motion planners (TAMP) handle the complex interaction between motion-level decisions and task-level plan feasibility.
TAMP approaches rely on domain-specific symbolic operators to guide the task-level search, making planning efficient.
We propose a bottom-up relational learning method for operator learning and show how the learned operators can be used for planning in a TAMP system.
arXiv Detail & Related papers (2021-02-28T19:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.