Transformer-Enhanced Motion Planner: Attention-Guided Sampling for State-Specific Decision Making
- URL: http://arxiv.org/abs/2404.19403v1
- Date: Tue, 30 Apr 2024 09:48:11 GMT
- Title: Transformer-Enhanced Motion Planner: Attention-Guided Sampling for State-Specific Decision Making
- Authors: Lei Zhuang, Jingdong Zhao, Yuntao Li, Zichun Xu, Liangliang Zhao, Hong Liu,
- Abstract summary: Transformer-Enhanced Motion Planner (TEMP) is a novel deep learning-based motion planning framework.
TEMP synergizes an Environmental Information Semantic (EISE) with a Motion Planning Transformer (MPT)
- Score: 6.867637277944729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling-based motion planning (SBMP) algorithms are renowned for their robust global search capabilities. However, the inherent randomness in their sampling mechanisms often result in inconsistent path quality and limited search efficiency. In response to these challenges, this work proposes a novel deep learning-based motion planning framework, named Transformer-Enhanced Motion Planner (TEMP), which synergizes an Environmental Information Semantic Encoder (EISE) with a Motion Planning Transformer (MPT). EISE converts environmental data into semantic environmental information (SEI), providing MPT with an enriched environmental comprehension. MPT leverages an attention mechanism to dynamically recalibrate its focus on SEI, task objectives, and historical planning data, refining the sampling node generation. To demonstrate the capabilities of TEMP, we train our model using a dataset comprised of planning results produced by the RRT*. EISE and MPT are collaboratively trained, enabling EISE to autonomously learn and extract patterns from environmental data, thereby forming semantic representations that MPT could more effectively interpret and utilize for motion planning. Subsequently, we conducted a systematic evaluation of TEMP's efficacy across diverse task dimensions, which demonstrates that TEMP achieves exceptional performance metrics and a heightened degree of generalizability compared to state-of-the-art SBMPs.
Related papers
- DyPNIPP: Predicting Environment Dynamics for RL-based Robust Informative Path Planning [13.462524685985818]
DyPNIPP is a robust RL-based IPP framework designed to effectively acrosstemporal environments.
Our experiments in a wildfire environment demonstrate that DyPNIPP outperforms existing RL-based IPP algorithms.
arXiv Detail & Related papers (2024-10-22T17:07:26Z) - R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
arXiv Detail & Related papers (2024-09-21T18:32:44Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches [15.136760934936381]
Task and Motion Planning (TAMP) integrates high-level task planning and low-level motion planning to equip robots with the autonomy to reason over long-horizon, dynamic tasks.
This survey provides a comprehensive review on optimization-based TAMP, covering (i) planning domain representations, (ii) individual solution strategies for components, including AI planning and trajectory optimization (TO), and (iii) the dynamic interplay between logic-based task planning and model-based TO.
arXiv Detail & Related papers (2024-04-03T15:38:36Z) - Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments [3.7660066212240753]
Motion planning of autonomous agents in partially known environments is a challenging problem.
This paper proposes a model-free reinforcement learning approach to address this problem.
We show that our proposed method effectively addresses environment, action, and observation uncertainties.
arXiv Detail & Related papers (2023-04-30T19:57:39Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs)
Planning in MPPs faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender.
We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles.
arXiv Detail & Related papers (2022-02-22T05:41:43Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Reinforcement Learning for Minimizing Age of Information in Real-time
Internet of Things Systems with Realistic Physical Dynamics [158.67956699843168]
This paper studies the problem of minimizing the weighted sum of age of information (AoI) and total energy consumption of Internet of Things (IoT) devices.
A distributed reinforcement learning approach is proposed to optimize the sampling policy.
Simulations with real data of PM 2.5 pollution show that the proposed algorithm can reduce the sum of AoI by up to 17.8% and 33.9%.
arXiv Detail & Related papers (2021-04-04T03:17:26Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Adaptive Informative Path Planning with Multimodal Sensing [36.16721115973077]
AIPPMS (MS for Multimodal Sensing)
We frame AIPPMS as a Partially Observable Markov Decision Process (POMDP) and solve it with online planning.
We evaluate our method on two domains: a simulated search-and-rescue scenario and a challenging extension to the classic RockSample problem.
arXiv Detail & Related papers (2020-03-21T20:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.