論文の概要: An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids
- arxiv url: http://arxiv.org/abs/2404.02923v1
- Date: Sun, 31 Mar 2024 01:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 19:04:16.729327
- Title: An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids
- Title(参考訳): 配電系統におけるサイバー攻撃検出のための教師なし敵オートエンコーダ
- Authors: Mehdi Jabbari Zideh, Mohammad Reza Khalghani, Sarika Khushalani Solanki,
- Abstract要約: 本稿では,不均衡配電系統における偽データインジェクション攻撃(FDIA)を検出するために,教師なし対向オートエンコーダ(AAE)モデルを提案する。
提案手法は,オートエンコーダの構造における長期記憶(LSTM)を用いて,時系列計測における時間依存性をキャプチャする。
IEEE 13-bus と 123-bus で、歴史的気象データと歴史的実世界の負荷データを用いてテストされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and load variations. Moreover, the unknown behavior of cyber attacks, especially false data injection attacks (FDIAs) in the distribution grids with complex temporal correlations and the limited amount of labeled data increases the vulnerability of the grids and imposes a high risk in the secure and reliable operation of the grids. To address these challenges, this paper proposes an unsupervised adversarial autoencoder (AAE) model to detect FDIAs in unbalanced power distribution grids integrated with DERs, i.e., PV systems and wind generation. The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements and leverages the power of generative adversarial networks (GANs) for better reconstruction of the input data. The advantage of the proposed data-driven model is that it can detect anomalous points for the system operation without reliance on abstract models or mathematical representations. To evaluate the efficacy of the approach, it is tested on IEEE 13-bus and 123-bus systems with historical meteorological data (wind speed, ambient temperature, and solar irradiance) as well as historical real-world load data under three types of data falsification functions. The comparison of the detection results of the proposed model with other unsupervised learning methods verifies its superior performance in detecting cyber attacks in unbalanced power distribution grids.
- Abstract(参考訳): 不均衡な構成のスマート電力配電網におけるサイバー攻撃の検出は、これらの不確実で確率的なシステムの本質的に非線形な性質のため、課題となる。
これは、分散エネルギー資源(DER)の生成と負荷変動の断続的な特性に由来する。
さらに、複雑な時間的相関を持つ配電網におけるサイバー攻撃、特に偽データ注入攻撃(FDIA)の未知の挙動とラベル付きデータの限られた量により、グリッドの脆弱性が増加し、グリッドの安全かつ信頼性の高い操作において高いリスクが課される。
これらの課題に対処するため,本稿では,DASと統合された非平衡配電系統,すなわちPVシステムと風力発電におけるFDIAを検出するための,教師なし対向型オートエンコーダ(AAE)モデルを提案する。
提案手法は,自動エンコーダの構造における長期記憶(LSTM)を用いて時系列計測の時間的依存性を捉え,GAN(Generative Adversarial Network)のパワーを利用して入力データをよりよく再構成する。
提案したデータ駆動モデルの利点は、抽象モデルや数学的表現に依存することなく、システム操作の異常点を検出することができることである。
提案手法の有効性を評価するため, 歴史的気象データ(風速, 環境温度, 太陽照度)と3種類のデータファルシフィケーション関数による歴史的実世界の負荷データを用いて, IEEE 13-bus および 123-bus システムで検証した。
提案手法と他の教師なし学習手法との比較により,不均衡電力配電網におけるサイバー攻撃の検出において,その優れた性能が検証された。
関連論文リスト
- Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)モデルを提案する。
提案モデルの性能評価は,カリフォルニア州リバーサイドのIEEE 123バスシステムと実世界の給電システムを用いて行った。
論文 参考訳(メタデータ) (2024-06-05T04:28:57Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)を提案する。
提案モデルは、Kirchhoffの法則を適用して、ニューラルネットワークの損失関数に物理原理を統合する。
論文 参考訳(メタデータ) (2023-12-08T00:05:13Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
偽データインジェクション攻撃(False Data Injection attack, FDIA)は、悪意のあるデータを注入することで、スマート測定デバイスをターゲットにする攻撃の1つである。
本稿では,ハイブリッドディープニューラルネットワークアーキテクチャと組み合わせたフェデレート学習に基づくスキームを提案する。
提案手法をIEEE 57,118,300バスシステムおよび実電力負荷データを用いて広範囲なシミュレーションにより検証した。
論文 参考訳(メタデータ) (2023-06-17T20:29:55Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
CPSにおける攻撃検出タスクの一般的なフレームワークであるTFDPMを提案する。
履歴データから時間パターンと特徴パターンを同時に抽出する。
ノイズスケジューリングネットワークは、検出速度を3倍に向上させる。
論文 参考訳(メタデータ) (2021-12-20T13:13:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
論文 参考訳(メタデータ) (2021-01-18T06:34:45Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。