論文の概要: Multi-Source Data Fusion for Cyberattack Detection in Power Systems
- arxiv url: http://arxiv.org/abs/2101.06897v1
- Date: Mon, 18 Jan 2021 06:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 05:47:50.382144
- Title: Multi-Source Data Fusion for Cyberattack Detection in Power Systems
- Title(参考訳): 電力系統におけるサイバー攻撃検出のためのマルチソースデータフュージョン
- Authors: Abhijeet Sahu and Zeyu Mao and Patrick Wlazlo and Hao Huang and
Katherine Davis and Ana Goulart and Saman Zonouz
- Abstract要約: 複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
- 参考スコア(独自算出の注目度): 1.8914160585516038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyberattacks can cause a severe impact on power systems unless detected
early. However, accurate and timely detection in critical infrastructure
systems presents challenges, e.g., due to zero-day vulnerability exploitations
and the cyber-physical nature of the system coupled with the need for high
reliability and resilience of the physical system. Conventional rule-based and
anomaly-based intrusion detection system (IDS) tools are insufficient for
detecting zero-day cyber intrusions in the industrial control system (ICS)
networks. Hence, in this work, we show that fusing information from multiple
data sources can help identify cyber-induced incidents and reduce false
positives. Specifically, we present how to recognize and address the barriers
that can prevent the accurate use of multiple data sources for fusion-based
detection. We perform multi-source data fusion for training IDS in a
cyber-physical power system testbed where we collect cyber and physical side
data from multiple sensors emulating real-world data sources that would be
found in a utility and synthesizes these into features for algorithms to detect
intrusions. Results are presented using the proposed data fusion application to
infer False Data and Command injection-based Man-in- The-Middle (MiTM) attacks.
Post collection, the data fusion application uses time-synchronized merge and
extracts features followed by pre-processing such as imputation and encoding
before training supervised, semi-supervised, and unsupervised learning models
to evaluate the performance of the IDS. A major finding is the improvement of
detection accuracy by fusion of features from cyber, security, and physical
domains. Additionally, we observed the co-training technique performs at par
with supervised learning methods when fed with our features.
- Abstract(参考訳): サイバー攻撃は早期に検出されない限り、電力システムに深刻な影響を与える可能性がある。
しかしながら、重要なインフラストラクチャシステムにおける正確かつタイムリーな検出は、ゼロデイ脆弱性の搾取や、システムのサイバー物理的性質と、高い信頼性とレジリエンスの必要性によって、課題を呈している。
産業制御システム(ICS)ネットワークにおけるゼロデイサイバー侵入を検出するには,従来のルールベースおよび異常ベース侵入検知システム(IDS)ツールが不十分である。
そこで本研究では,複数のデータソースからの情報を融合することで,サイバーインシデントを識別し,偽陽性を低減できることを示す。
具体的には,複数のデータソースによる核融合検出の正確な使用を防止するための障壁の認識と対処について述べる。
我々は,実世界のデータソースをエミュレートする複数のセンサからサイバーや物理のデータを収集し,これらを合成して侵入を検知するアルゴリズムの機能とするサイバー・フィジカル・システムテストベッドにおいて,idをトレーニングするためのマルチソースデータ融合を行う。
提案したデータ融合アプリケーションを用いてFalse DataとCommand InjectionベースのMan-in-The-Middle(MiTM)攻撃を推測する。
data fusionアプリケーションは、時間同期マージを使用して、idのパフォーマンスを評価するために教師付き、半教師付き、教師なしの学習モデルの前に、インプテーションやエンコーディングなどの前処理を行う。
主な発見は、サイバー、セキュリティ、物理的ドメインの特徴の融合による検出精度の向上である。
また,協調学習技術は,特徴を取り入れた指導的学習手法と同等に機能することを示した。
関連論文リスト
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
本研究は,ICS環境におけるネットワークデータとプロセスデータの組み合わせによる攻撃検出の改善について検討する。
この結果から,ネットワークトラフィックと運用プロセスデータの統合により,検出能力が向上することが示唆された。
結果は有望だが、彼らは予備的であり、さらなる研究の必要性を強調している。
論文 参考訳(メタデータ) (2024-10-25T17:41:33Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
偽データインジェクション攻撃(False Data Injection attack, FDIA)は、悪意のあるデータを注入することで、スマート測定デバイスをターゲットにする攻撃の1つである。
本稿では,ハイブリッドディープニューラルネットワークアーキテクチャと組み合わせたフェデレート学習に基づくスキームを提案する。
提案手法をIEEE 57,118,300バスシステムおよび実電力負荷データを用いて広範囲なシミュレーションにより検証した。
論文 参考訳(メタデータ) (2023-06-17T20:29:55Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
ファサー計測装置(PMU)を用いて電力システムを監視することは、将来有望な技術の一つである。
サイバー物理的相互作用の増加は、利点と欠点の両方をもたらし、そこでは、測定データの異常の形で欠点の1つが生まれる。
本稿では,PMUデータにおける異常検出の様々な手法に基づくハイブリッドAIベースモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2022-09-21T11:22:01Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。