論文の概要: Jailbreaking Prompt Attack: A Controllable Adversarial Attack against Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.02928v2
- Date: Sun, 2 Jun 2024 12:36:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 15:27:55.047148
- Title: Jailbreaking Prompt Attack: A Controllable Adversarial Attack against Diffusion Models
- Title(参考訳): 脱獄プロンプト攻撃:拡散モデルに対する制御可能な敵攻撃
- Authors: Jiachen Ma, Anda Cao, Zhiqing Xiao, Jie Zhang, Chao Ye, Junbo Zhao,
- Abstract要約: 自動攻撃フレームワークであるJPA(Jailbreak Prompt Attack)を提案する。
我々は、元の画像のセマンティクスを保ちながら、安全チェックをバイパスするプロンプトを維持することを目的としている。
評価の結果,JPA はオンライン・サービスとオフライン・ディフェンス・セーフティ・チェッカーの両方をバイパスして NSFW 画像の生成に成功した。
- 参考スコア(独自算出の注目度): 11.24680299774092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-Image (T2I) models have received widespread attention due to their remarkable generation capabilities. However, concerns have been raised about the ethical implications of the models in generating Not Safe for Work (NSFW) images because NSFW images may cause discomfort to people or be used for illegal purposes. To mitigate the generation of such images, T2I models deploy various types of safety checkers. However, they still cannot completely prevent the generation of NSFW images. In this paper, we propose the Jailbreak Prompt Attack (JPA) - an automatic attack framework. We aim to maintain prompts that bypass safety checkers while preserving the semantics of the original images. Specifically, we aim to find prompts that can bypass safety checkers because of the robustness of the text space. Our evaluation demonstrates that JPA successfully bypasses both online services with closed-box safety checkers and offline defenses safety checkers to generate NSFW images.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)モデルは、その顕著な生成能力のために広く注目を集めている。
しかし、NSFW画像は人に対する不快感や違法な目的のために使用される可能性があるため、NSFW(Not Safe for Work)画像を生成する際のモデルによる倫理的影響が懸念されている。
このような画像の生成を緩和するため、T2Iモデルは様々な種類の安全チェッカーをデプロイする。
しかし,NSFW画像の生成を完全に防止することはできない。
本稿では,自動攻撃フレームワークであるJPA(Jailbreak Prompt Attack)を提案する。
我々は、元の画像のセマンティクスを保ちながら、安全チェックをバイパスするプロンプトを維持することを目的としている。
具体的には,テキスト空間の堅牢性から,安全性チェックを回避できるプロンプトを見つけることを目的としている。
評価の結果,JPAはオンライン・サービスとオフライン・ディフェンス・セーフティ・チェッカーの両方をバイパスしてNSFW画像を生成することができた。
関連論文リスト
- AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models [20.37481116837779]
AdvI2Iは、入力画像を操作して拡散モデルを誘導し、NSFWコンテンツを生成する新しいフレームワークである。
ジェネレータを最適化して敵画像を作成することで、AdvI2Iは既存の防御機構を回避できる。
本稿では,AdvI2IとAdvI2I-Adaptiveの両方が,現行の安全対策を効果的に回避可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T19:15:06Z) - RT-Attack: Jailbreaking Text-to-Image Models via Random Token [24.61198605177661]
ランダム検索を利用した2段階のクエリベースのブラックボックスアタック手法を提案する。
第1段階では、敵と標的の有害なプロンプト間の意味的類似性を最大化することにより、予備的なプロンプトを確立する。
第2段階では、この初期プロンプトを使用してアプローチを洗練し、脱獄を目的とした詳細な敵対的プロンプトを作成します。
論文 参考訳(メタデータ) (2024-08-25T17:33:40Z) - Perception-guided Jailbreak against Text-to-Image Models [18.825079959947857]
PGJと呼ばれるLPM駆動型知覚誘導ジェイルブレイク法を提案する。
これは、特定のT2Iモデル(モデルフリー)を必要としないブラックボックスジェイルブレイク方式であり、非常に自然な攻撃プロンプトを生成する。
6つのオープンソースモデルと何千ものプロンプトによる商用オンラインサービスによる実験により,PGJの有効性が検証された。
論文 参考訳(メタデータ) (2024-08-20T13:40:25Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Latent Guard: a Safety Framework for Text-to-image Generation [64.49596711025993]
既存の安全対策は、容易に回避できるテキストブラックリストや有害なコンテンツ分類に基づいている。
テキスト・ツー・イメージ生成の安全性向上を目的としたフレームワークであるLatent Guardを提案する。
ブラックリストベースのアプローチにインスパイアされたLatent Guardは、T2Iモデルのテキストエンコーダの上に潜在空間を学習し、有害な概念の存在を確認することができる。
論文 参考訳(メタデータ) (2024-04-11T17:59:52Z) - GuardT2I: Defending Text-to-Image Models from Adversarial Prompts [16.317849859000074]
GuardT2Iは、T2Iモデルの敵のプロンプトに対する堅牢性を高めるための生成的アプローチを採用する、新しいモデレーションフレームワークである。
実験の結果、GardetT2IはOpenAI-ModerationやMicrosoft Azure Moderatorといった主要な商用ソリューションよりも優れています。
論文 参考訳(メタデータ) (2024-03-03T09:04:34Z) - Get What You Want, Not What You Don't: Image Content Suppression for
Text-to-Image Diffusion Models [86.92711729969488]
テキスト埋め込みの操作方法を分析し、不要なコンテンツを除去する。
第1は、テキスト埋め込み行列を正規化し、望ましくないコンテンツを効果的に抑制する。
第2の方法は、プロンプトの不要なコンテンツ生成をさらに抑制し、所望のコンテンツの生成を促進することである。
論文 参考訳(メタデータ) (2024-02-08T03:15:06Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
本稿では,大規模言語モデルに対する新たなジェイルブレイク攻撃であるAutoDANを紹介する。
AutoDANは、慎重に設計された階層型遺伝的アルゴリズムによって、ステルスなジェイルブレイクプロンプトを自動的に生成できる。
論文 参考訳(メタデータ) (2023-10-03T19:44:37Z) - Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models [79.50701155336198]
textbfForget-Me-Notは、適切に設定されたテキスト・ツー・イメージモデルから、指定されたID、オブジェクト、スタイルを30秒で安全に削除するように設計されている。
我々は,Forget-Me-Notが,モデルの性能を他の概念に保ちながら,ターゲットとなる概念を効果的に排除できることを実証した。
また、Stable Diffusionの軽量モデルパッチとして適応することができ、コンセプト操作と便利な配布を可能にしている。
論文 参考訳(メタデータ) (2023-03-30T17:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。