What Blocks My Blockchain's Throughput? Developing a Generalizable Approach for Identifying Bottlenecks in Permissioned Blockchains
- URL: http://arxiv.org/abs/2404.02930v1
- Date: Tue, 2 Apr 2024 13:00:50 GMT
- Title: What Blocks My Blockchain's Throughput? Developing a Generalizable Approach for Identifying Bottlenecks in Permissioned Blockchains
- Authors: Orestis Papageorgiou, Lasse Börtzler, Egor Ermolaev, Jyoti Kumari, Johannes Sedlmeir,
- Abstract summary: We develop a more unified and graphical approach for identifying bottlenecks in permissioned blockchains.
We conduct in-depth case studies on Hyperledger Fabric and Quorum, two widely used permissioned blockchains.
- Score: 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Permissioned blockchains have been proposed for a variety of use cases that require decentralization yet address enterprise requirements that permissionless blockchains to date cannot satisfy -- particularly in terms of performance. However, popular permissioned blockchains still exhibit a relatively low maximum throughput in comparison to established centralized systems. Consequently, researchers have conducted several benchmarking studies on different permissioned blockchains to identify their limitations and -- in some cases -- their bottlenecks in an attempt to find avenues for improvement. Yet, these approaches are highly heterogeneous, difficult to compare, and require a high level of expertise in the implementation of the underlying specific blockchain. In this paper, we develop a more unified and graphical approach for identifying bottlenecks in permissioned blockchains based on a systematic review of related work, experiments with the Distributed Ledger Performance Scan (DLPS), and an extension of its graphical evaluation functionalities. We conduct in-depth case studies on Hyperledger Fabric and Quorum, two widely used permissioned blockchains with distinct architectural designs, demonstrating the adaptability of our framework across different blockchains. We provide researchers and practitioners working on evaluating or improving permissioned blockchains with a toolkit, guidelines on what data to document, and insights on how to proceed in the search process for bottlenecks.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - SOK: Blockchain for Provenance [0.0]
Provenance, which traces data from its creation to manipulation, is crucial for ensuring data integrity, reliability, and trustworthiness.
Provenance technology has become a popular choice for implementing provenance due to its distributed, transparent, and immutable nature.
Numerous studies on blockchain designs are specifically dedicated to provenance, and specialize in this area.
arXiv Detail & Related papers (2024-07-25T01:46:49Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Should my Blockchain Learn to Drive? A Study of Hyperledger Fabric [14.834625066344586]
This paper explores the concept of self-driving blockchains, which have the potential to predict workload changes and reconfigure themselves for optimal performance without human intervention.
We identify specific parameters and components in Hyperledger Fabric, a popular permissioned blockchain system, that are suitable for autonomous adaptation and offer potential solutions for the challenges involved.
Our experiments indicate up to 11% improvement in success throughput and a 30% decrease in latency, making this a significant step towards implementing a fully autonomous blockchain system in the future.
arXiv Detail & Related papers (2024-06-10T14:33:59Z) - SoK: Public Blockchain Sharding [19.82054462793622]
This study provides a systemization of knowledge of public blockchain sharding.
It includes the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols.
arXiv Detail & Related papers (2024-05-30T22:38:40Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - PBL: System for Creating and Maintaining Personal Blockchain Ledgers [3.5897534810405403]
This work presents a novel architecture for creating and maintaining personal blockchain ledgers.
Our system utilizes independent modular services, enabling individuals to securely store their data in a personal blockchain ledger.
Using rigorous mathematical methods, we prove that our system produces append-only, immutable, tamper-evident, tamper-resistant ledgers.
arXiv Detail & Related papers (2023-05-08T14:17:27Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.