SoK: Public Blockchain Sharding
- URL: http://arxiv.org/abs/2405.20521v1
- Date: Thu, 30 May 2024 22:38:40 GMT
- Title: SoK: Public Blockchain Sharding
- Authors: Md Mohaimin Al Barat, Shaoyu Li, Changlai Du, Y. Thomas Hou, Wenjing Lou,
- Abstract summary: This study provides a systemization of knowledge of public blockchain sharding.
It includes the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols.
- Score: 19.82054462793622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blockchain's decentralization, transparency, and tamper-resistance properties have facilitated the system's use in various application fields. However, the low throughput and high confirmation latency hinder the widespread adoption of Blockchain. Many solutions have been proposed to address these issues, including first-layer solutions (or on-chain solutions) and second-layer solutions (or off-chain solutions). Among the proposed solutions, the blockchain sharding system is the most scalable one, where the nodes in the network are divided into several groups. The nodes in different shards work in parallel to validate the transactions and add them to the blocks, and in such a way, the throughput increases significantly. However, previous works have not adequately summarized the latest achievements in blockchain sharding, nor have they fully showcased its state-of-the-art. Our study provides a systemization of knowledge of public blockchain sharding, including the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols. We also compare their performance and discuss current constraints and future research directions.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Drawing the boundaries between Blockchain and Blockchain-like systems: A Comprehensive Survey on Distributed Ledger Technologies [0.0]
Bitcoin's global success has led to the rise of blockchain, but many systems labeled as "blockchain" deviate from its core principles.
This survey addresses the need for a comprehensive review and taxonomy to clarify the differences between blockchain and blockchain-like systems.
arXiv Detail & Related papers (2024-09-26T09:17:13Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
Not every blockchain system is suitable for specific IoT applications.
Public blockchains are not suitable for storing sensitive data.
We explore the blockchain's application in three pivotal IoT areas: edge AI, communications, and healthcare.
arXiv Detail & Related papers (2024-05-08T04:25:57Z) - What Blocks My Blockchain's Throughput? Developing a Generalizable Approach for Identifying Bottlenecks in Permissioned Blockchains [0.3495246564946556]
We develop a more unified and graphical approach for identifying bottlenecks in permissioned blockchains.
We conduct in-depth case studies on Hyperledger Fabric and Quorum, two widely used permissioned blockchains.
arXiv Detail & Related papers (2024-04-02T13:00:50Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - SoK: Blockchain Governance [13.95507600720467]
The topic of blockchain governance is a fertile domain for a thorough systematization.
We start by distilling a comprehensive array of properties for sound governance systems.
While all properties are satisfied, even partially, by at least one system, no system that most of them.
arXiv Detail & Related papers (2022-01-18T18:38:26Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Selective Deletion in a Blockchain [0.0]
We present the first concept for the selective deletion of single entries in a blockchain.
The general consensus algorithm is extended by the functionality of regularly creating summary blocks.
With a shifting marker of the Genesis Block, data can be deleted from the beginning of a blockchain.
arXiv Detail & Related papers (2021-01-14T08:06:37Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.