Foundation Models for Structural Health Monitoring
- URL: http://arxiv.org/abs/2404.02944v1
- Date: Wed, 3 Apr 2024 13:32:44 GMT
- Title: Foundation Models for Structural Health Monitoring
- Authors: Luca Benfenati, Daniele Jahier Pagliari, Luca Zanatta, Yhorman Alexander Bedoya Velez, Andrea Acquaviva, Massimo Poncino, Enrico Macii, Luca Benini, Alessio Burrello,
- Abstract summary: We propose for the first time the use of Transformer neural networks, with a Masked Auto-Encoder architecture, as Foundation Models for Structural Health Monitoring.
We demonstrate the ability of these models to learn generalizable representations from multiple large datasets through self-supervised pre-training.
We showcase the effectiveness of our foundation models using data from three operational viaducts.
- Score: 17.37816294594306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structural Health Monitoring (SHM) is a critical task for ensuring the safety and reliability of civil infrastructures, typically realized on bridges and viaducts by means of vibration monitoring. In this paper, we propose for the first time the use of Transformer neural networks, with a Masked Auto-Encoder architecture, as Foundation Models for SHM. We demonstrate the ability of these models to learn generalizable representations from multiple large datasets through self-supervised pre-training, which, coupled with task-specific fine-tuning, allows them to outperform state-of-the-art traditional methods on diverse tasks, including Anomaly Detection (AD) and Traffic Load Estimation (TLE). We then extensively explore model size versus accuracy trade-offs and experiment with Knowledge Distillation (KD) to improve the performance of smaller Transformers, enabling their embedding directly into the SHM edge nodes. We showcase the effectiveness of our foundation models using data from three operational viaducts. For AD, we achieve a near-perfect 99.9% accuracy with a monitoring time span of just 15 windows. In contrast, a state-of-the-art method based on Principal Component Analysis (PCA) obtains its first good result (95.03% accuracy) only considering 120 windows. On two different TLE tasks, our models obtain state-of-the-art performance on multiple evaluation metrics (R$^2$ score, MAE% and MSE%). On the first benchmark, we achieve an R$^2$ score of 0.97 and 0.85 for light and heavy vehicle traffic, respectively, while the best previous approach stops at 0.91 and 0.84. On the second one, we achieve an R$^2$ score of 0.54 versus the 0.10 of the best existing method.
Related papers
- Unsupervised Fault Detection using SAM with a Moving Window Approach [0.0]
We present an unsupervised method that uses the high end Segment Anything Model (SAM) and a moving window approach.
We aim to overcome these challenges without requiring fine tun ing or labeled data.
arXiv Detail & Related papers (2024-07-08T18:12:29Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - An Experimental Study on Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training [51.622652121580394]
Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) has enabled promising downstream performance on top of the learned self-supervised ViT features.
In this paper, we question if the textitextremely simple lightweight ViTs' fine-tuning performance can also benefit from this pre-training paradigm.
Our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design ($5.7M$/$6.5M$) can achieve $79.4%$/$78.9%$ top-1 accuracy on ImageNet-1
arXiv Detail & Related papers (2024-04-18T14:14:44Z) - FusionAD: Multi-modality Fusion for Prediction and Planning Tasks of
Autonomous Driving [20.037562671813]
We present FusionAD, the first unified framework that fuse the information from most critical sensors, camera and LiDAR, goes beyond perception task.
In constrast to camera-based end-to-end UniAD, we establish a method fusion aided modality-aware prediction status planning modules, dubbed FMS.
We conduct extensive experiments on commonly used benchmark nu's dataset, our advantages state-of-the-art performance and surpassing baselines on average 15% on perception tasks like detection and tracking, 10% on occupancy prediction accuracy, reducing prediction error from 0.708 to 0.389, and reducing collision rate from 0.31%
arXiv Detail & Related papers (2023-08-02T08:29:44Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Utilizing Explainable AI for improving the Performance of Neural
Networks [6.670483888835783]
We propose a retraining pipeline that consistently improves the model predictions starting from XAI.
In order to benchmark our method, we evaluate it on both real-life and public datasets.
Experiments using the SHAP-based retraining approach achieve a 4% more accuracy w.r.t. the standard equal weight retraining for people counting tasks.
arXiv Detail & Related papers (2022-10-07T09:39:20Z) - Dimensionality Expansion of Load Monitoring Time Series and Transfer
Learning for EMS [0.7133136338850781]
Energy management systems rely on (non)-intrusive load monitoring (N)ILM to monitor and manage appliances.
We propose a new approach for load monitoring in building EMS based on dimensionality expansion of time series and transfer learning.
arXiv Detail & Related papers (2022-04-06T13:13:24Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning [91.13797346047984]
We introduce ADAHESSIAN, a second order optimization algorithm which dynamically incorporates the curvature of the loss function via ADAptive estimates.
We show that ADAHESSIAN achieves new state-of-the-art results by a large margin as compared to other adaptive optimization methods.
arXiv Detail & Related papers (2020-06-01T05:00:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.