Unsupervised Fault Detection using SAM with a Moving Window Approach
- URL: http://arxiv.org/abs/2407.06303v1
- Date: Mon, 8 Jul 2024 18:12:29 GMT
- Title: Unsupervised Fault Detection using SAM with a Moving Window Approach
- Authors: Ahmed Maged, Herman Shen,
- Abstract summary: We present an unsupervised method that uses the high end Segment Anything Model (SAM) and a moving window approach.
We aim to overcome these challenges without requiring fine tun ing or labeled data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated f ault detection and monitoring in engineering are critical but frequently difficult owing to the necessity for collecting and labeling large amounts of defective samples . We present an unsupervised method that uses the high end Segment Anything Model (SAM) and a moving window approach. SAM has gained recognition in AI image segmentation communities for its accuracy and versatility. However, its performance can be inconsistent when dealing with certain unexpected shapes , such as shadows and subtle surface irregularities. This limitation raise s concerns about its applicability for fault detection in real world scenarios We aim to overcome these challenges without requiring fine tun ing or labeled data. Our technique divides pictures into smaller windows, which are subsequently processed using SAM. This increases the accuracy of fault identification by focusing on localized details. We compute the sizes of the segmented sections and then us e a clustering technique to discover consistent fault areas while filtering out noise. To further improve the method's robustness , we propose adding the Exponentially Weighted Moving Average (EWMA) technique for continuous monitoring in industrial settings, which would improve the method's capacity to trace faults over time. We compare our method to various well established methods u sing a real case study where our model achieve s 0.96 accuracy compared to 0. 8 5 for the second best method. W e also compare our method us ing two open source datasets where our model attains a consistent 0. 86 accuracy across the datasets compared to 0.53 and 0.54 for second best model s.
Related papers
- Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework [2.7898966850590625]
This paper introduces a new method for fault detection and condition monitoring for unseen data.
We use a variational autoencoder to capture the probabilistic distribution of previously seen and new unseen conditions.
Faults are detected by establishing a threshold for the health indexes, allowing the model to identify severe, unseen faults with high accuracy, even amidst noise.
arXiv Detail & Related papers (2024-04-08T22:20:23Z) - Foundation Models for Structural Health Monitoring [17.37816294594306]
We propose for the first time the use of Transformer neural networks, with a Masked Auto-Encoder architecture, as Foundation Models for Structural Health Monitoring.
We demonstrate the ability of these models to learn generalizable representations from multiple large datasets through self-supervised pre-training.
We showcase the effectiveness of our foundation models using data from three operational viaducts.
arXiv Detail & Related papers (2024-04-03T13:32:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Leveraging Uncertainties for Deep Multi-modal Object Detection in
Autonomous Driving [12.310862288230075]
This work presents a probabilistic deep neural network that combines LiDAR point clouds and RGB camera images for robust, accurate 3D object detection.
We explicitly model uncertainties in the classification and regression tasks, and leverage uncertainties to train the fusion network via a sampling mechanism.
arXiv Detail & Related papers (2020-02-01T14:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.