論文の概要: Optimizing the Deployment of Tiny Transformers on Low-Power MCUs
- arxiv url: http://arxiv.org/abs/2404.02945v1
- Date: Wed, 3 Apr 2024 14:14:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:54:31.483242
- Title: Optimizing the Deployment of Tiny Transformers on Low-Power MCUs
- Title(参考訳): 低消費電力MCUにおけるTiny変換器の配置最適化
- Authors: Victor J. B. Jung, Alessio Burrello, Moritz Scherer, Francesco Conti, Luca Benini,
- Abstract要約: この作業は、商用MCU上でのエンコーダTiny Transformersの柔軟性とマルチプラットフォームデプロイメントの実現と最適化を目的としている。
我々のフレームワークは、データの再利用を最大化し、重要な注意ブロックにデータマーシャリング操作を避けるために、カーネルの最適化ライブラリを提供する。
MHSA深度優先のタイリング方式はメモリピークを最大6.19倍に減らし、融合重み付けはランタイムを1.53倍減らし、パラメータ数を25%減らすことを示した。
- 参考スコア(独自算出の注目度): 12.905978154498499
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transformer networks are rapidly becoming SotA in many fields, such as NLP and CV. Similarly to CNN, there is a strong push for deploying Transformer models at the extreme edge, ultimately fitting the tiny power budget and memory footprint of MCUs. However, the early approaches in this direction are mostly ad-hoc, platform, and model-specific. This work aims to enable and optimize the flexible, multi-platform deployment of encoder Tiny Transformers on commercial MCUs. We propose a complete framework to perform end-to-end deployment of Transformer models onto single and multi-core MCUs. Our framework provides an optimized library of kernels to maximize data reuse and avoid unnecessary data marshaling operations into the crucial attention block. A novel MHSA inference schedule, named Fused-Weight Self-Attention, is introduced, fusing the linear projection weights offline to further reduce the number of operations and parameters. Furthermore, to mitigate the memory peak reached by the computation of the attention map, we present a Depth-First Tiling scheme for MHSA. We evaluate our framework on three different MCU classes exploiting ARM and RISC-V ISA, namely the STM32H7, the STM32L4, and GAP9 (RV32IMC-XpulpV2). We reach an average of 4.79x and 2.0x lower latency compared to SotA libraries CMSIS-NN (ARM) and PULP-NN (RISC-V), respectively. Moreover, we show that our MHSA depth-first tiling scheme reduces the memory peak by up to 6.19x, while the fused-weight attention can reduce the runtime by 1.53x, and number of parameters by 25%. We report significant improvements across several Tiny Transformers: for instance, when executing a transformer block for the task of radar-based hand-gesture recognition on GAP9, we achieve a latency of 0.14ms and energy consumption of 4.92 micro-joules, 2.32x lower than the SotA PULP-NN library on the same platform.
- Abstract(参考訳): トランスフォーマーネットワークは、NLPやCVなど多くの分野で急速にSotAになりつつある。
CNNと同様に、Transformerモデルを極端に展開するための強力な推進力があり、最終的にMCUの小さな電力予算とメモリフットプリントに適合する。
しかし、この方向の初期のアプローチは、主にアドホック、プラットフォーム、モデル固有である。
この作業は、商用MCU上でのエンコーダTiny Transformersの柔軟性とマルチプラットフォームデプロイメントの実現と最適化を目的としている。
本稿では,Transformerモデルの単一およびマルチコアMCUへのエンドツーエンド展開を実現するための完全なフレームワークを提案する。
我々のフレームワークは、データの再利用を最大化し、不要なデータマーシャリング操作を避けるためにカーネルの最適化ライブラリを提供する。
新たなMHSA推論スケジュールであるFused-Weight Self-Attentionが導入された。
さらに、アテンションマップの計算によって到達したメモリピークを緩和するために、MHSAの深さファーストタイリング方式を提案する。
我々はARMとRISC-V ISAを利用する3種類のMCUクラス、すなわちSTM32H7、STM32L4、GAP9(RV32IMC-XpulpV2)について評価を行った。
SotAライブラリのCMSIS-NN(ARM)とPULP-NN(RISC-V)と比較すると,平均4.79倍,2.0倍のレイテンシを実現しています。
さらに,MHSA深度優先型タイリング方式はメモリピークを最大6.19倍に低減し,融合重み付けにより実行時間を1.53倍、パラメータ数を25%削減できることを示した。
例えば、GAP9上でレーダベースの手振り認識のタスクのためにトランスフォーマーブロックを実行する場合、同じプラットフォーム上のSotA PULP-NNライブラリの2.32倍の4.92マイクロジュールのレイテンシとエネルギー消費を達成する。
関連論文リスト
- Accelerating TinyML Inference on Microcontrollers through Approximate Kernels [3.566060656925169]
本研究では、近似計算とソフトウェアカーネル設計を組み合わせることで、マイクロコントローラ上での近似CNNモデルの推定を高速化する。
CIFAR-10データセットでトレーニングされたSTM32-Nucleoボードと2つの人気のあるCNNによる評価は、最先端の正確な推測と比較すると、平均21%のレイテンシ削減が可能であることを示している。
論文 参考訳(メタデータ) (2024-09-25T11:10:33Z) - SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation [74.07836010698801]
この問題に対処するために,SMPLベースのトランスフォーマーフレームワーク(SMPLer)を提案する。
SMPLerは、切り離された注意操作とSMPLベースのターゲット表現の2つの重要な要素を組み込んでいる。
SMPLerの既存の3次元人体形状に対する効果とポーズ推定方法の実証実験を行った。
論文 参考訳(メタデータ) (2024-04-23T17:59:59Z) - SDPose: Tokenized Pose Estimation via Circulation-Guide Self-Distillation [53.675725490807615]
SDPoseは小型変圧器モデルの性能向上のための新しい自己蒸留法である。
SDPose-Tは4.4Mパラメータと1.8 GFLOPを持つ69.7%のmAPを取得し、SDPose-S-V2はMSCOCO検証データセット上で73.5%のmAPを取得する。
論文 参考訳(メタデータ) (2024-04-04T15:23:14Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design [5.962184741057505]
本稿では,メモリ効率のよい設計レベルでの計算冗長性に対処することを目的とする。
より大きなストライドのパッチフィクスを使用するとメモリアクセスコストが削減されるだけでなく、競争性能も向上することがわかった。
SHViTは、最先端の速度精度トレードオフを得る単一ヘッドビジョン変換器である。
論文 参考訳(メタデータ) (2024-01-29T09:12:23Z) - MCUFormer: Deploying Vision Transformers on Microcontrollers with
Limited Memory [76.02294791513552]
我々はMCUFormerと呼ばれるハードウェア・アルゴリズムの協調最適化手法を提案し、メモリが極端に制限されたマイクロコントローラにビジョントランスフォーマーを配置する。
MCUFormerは320KBのメモリを持つ画像分類のためのImageNet上で73.62%のTop-1精度を実現している。
論文 参考訳(メタデータ) (2023-10-25T18:00:26Z) - Reduced Precision Floating-Point Optimization for Deep Neural Network
On-Device Learning on MicroControllers [15.37318446043671]
本稿では,MCUクラスデバイス上でのオンデバイス学習(ODL)プリミティブに対して,新しい精度最適化手法を提案する。
我々のアプローチは、シングルコアMCUのための既存のODLソフトウェアフレームワークよりも2桁以上高速である。
論文 参考訳(メタデータ) (2023-05-30T16:14:16Z) - Accelerating RNN-based Speech Enhancement on a Multi-Core MCU with Mixed
FP16-INT8 Post-Training Quantization [0.0]
リカレントニューラルネットワーク(RNN)に基づく音声強調(SE)アルゴリズムは、最先端マイクロコントローラユニット(MCU)上に展開される
LSTMまたはGRU再帰ブロックの並列計算を手動で管理したメモリ転送を伴う最適化されたソフトウェアパイプラインを提案する。
実験は、Valentiniデータセットでトレーニングされた複数のLSTMとGRUベースのSEモデルで行われ、最大1.24Mパラメータが特徴である。
論文 参考訳(メタデータ) (2022-10-14T10:32:05Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
一般のN:M空間パターンを利用して, フレキシブルかつ効率的にトランスフォーマーを高速化するアルゴリズム・ハードウェア協調最適化フレームワークを提案する。
我々は、N:Mスパーストランスをデプロイする際の大幅な高速化を実現するために、フレキシブルで効率的なハードウェアアーキテクチャ、すなわちSTAを提案する。
実験の結果, 他の方法と比較して, IDPを用いて生成したN:Mスパース変圧器は, トレーニング効率の高い精度で平均6.7%向上することがわかった。
論文 参考訳(メタデータ) (2022-08-12T04:51:49Z) - Bilaterally Slimmable Transformer for Elastic and Efficient Visual
Question Answering [75.86788916930377]
左右にスリム化可能なトランスフォーマー(BST)は任意のトランスフォーマーベースのVQAモデルに統合される。
1つのスリム化MCAN-BSTサブモデルは、VQA-v2で同等の精度を達成する。
最も小さなMCAN-BSTサブモデルは、推論中に9Mパラメータと0.16GのFLOPを持つ。
論文 参考訳(メタデータ) (2022-03-24T02:26:04Z) - A TinyML Platform for On-Device Continual Learning with Quantized Latent
Replays [66.62377866022221]
Latent Replay-based Continual Learning (CL)技術は、原則としてオンライン、サーバレスの適応を可能にする。
10コアのFP32対応並列超低消費電力プロセッサをベースとした,エンドツーエンドCLのためのHW/SWプラットフォームを提案する。
これらの手法を組み合わせることで,64MB未満のメモリを用いて連続学習を実現することができることを示す。
論文 参考訳(メタデータ) (2021-10-20T11:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。