論文の概要: KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
- arxiv url: http://arxiv.org/abs/2401.18079v5
- Date: Fri, 25 Oct 2024 18:29:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:13:33.295043
- Title: KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
- Title(参考訳): KVQuant:KVキャッシュ量子化による1000万コンテキストLLM推論を目指して
- Authors: Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao, Kurt Keutzer, Amir Gholami,
- Abstract要約: LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
- 参考スコア(独自算出の注目度): 67.74400574357472
- License:
- Abstract: LLMs are seeing growing use for applications which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in sub-4-bit precision. Our work, KVQuant, facilitates low precision KV cache quantization by incorporating several novel methods: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; and (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges. By applying our method to the LLaMA, Llama-2, Llama-3, and Mistral models, we achieve < 0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving LLaMA-7B with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system. We develop custom CUDA kernels for KVQuant, showing that we can achieve up to ~1.7x speedups, compared to baseline fp16 matrix-vector multiplications, for the LLaMA-7B model.
- Abstract(参考訳): LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を促進する。
i) チャネルごとの鍵量子化。ここでは、キーアクティベーションを量子化し、分布をよりよく一致させる寸法を調整する。
二 回転位置埋め込みの前のキーアクティベーションを定量化し、その量子化への影響を緩和する前回転鍵量子化
三 均一なKVキャッシュの量子化で、各層ごとの感度重み付き非均一なデータ型を導出し、その分布をよりよく表す。
(4) ベクトル単位の Dense-and-Sparse Quantization では、各ベクトルに対して別々に外れ値を分離し、量子化範囲のスキューを最小化する。
提案手法をLLaMA, Llama-2, Llama-3, Mistralモデルに適用することにより, Wikitext-2およびC4の3ビット量子化による0.1パープレキシティ劣化を実現し, 既存手法より優れることを示す。
提案手法では,A100-80GBのGPUで最大100万,8GPUで最大1000万のコンテキスト長でLLaMA-7Bを提供できる。
我々はKVQuant用のカスタムCUDAカーネルを開発し、LLaMA-7Bモデルのベースラインであるfp16行列ベクトル乗算と比較して最大1.7倍の高速化を実現可能であることを示した。
関連論文リスト
- AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations [36.63586957377984]
大規模な言語モデルは、しばしばかなりのストレージスペースを必要とする。
パラメータ数が膨大であるため、これらのモデルは大きなストレージスペースを必要とすることが多い。
1つの研究方向は、浮動小数点数の整数置換を用いてモデルを圧縮することを提案する。
論文 参考訳(メタデータ) (2024-10-17T04:35:57Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - QJL: 1-Bit Quantized JL Transform for KV Cache Quantization with Zero Overhead [10.067037913589175]
LLMをシリアル化するには、KVキャッシュにキーバリューの埋め込みを格納する必要があるため、かなりのメモリを必要とする。
従来の量子化法は、量子化定数を保存する必要があるため、大きなメモリオーバーヘッドに直面している。
ジョンソン-リンデンシュトラウス変換とサインビット量子化を組み合わせた新しい量子化手法であるQJLを導入する。
論文 参考訳(メタデータ) (2024-06-05T17:42:05Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。