論文の概要: Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
- arxiv url: http://arxiv.org/abs/2404.03010v2
- Date: Wed, 17 Jul 2024 10:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:19:21.760597
- Title: Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
- Title(参考訳): 細管構造の接続性と資源効率を考慮したスケルトンリコール損失
- Authors: Yannick Kirchhoff, Maximilian R. Rokuss, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Philipp Vollmuth, Jens Kleesiek, Fabian Isensee, Klaus Maier-Hein,
- Abstract要約: 容器、神経、道路、コンクリートクラックなどの細い管状構造を正確に分断することは、コンピュータビジョンにおいて重要な課題である。
DiceやCross-Entropyのような標準的なディープラーニングベースのセグメンテーション損失関数は、しばしば構造的な接続性やトポロジーを犠牲にしてオーバーラップに焦点を当てる。
我々は,GPUベースの計算を低コストなCPU操作で回避し,これらの課題を効果的に解決する新しいSkeleton Recall Lossを提案する。
- 参考スコア(独自算出の注目度): 2.0710692923459804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision. Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on volumetric overlap, often at the expense of preserving structural connectivity or topology. This can lead to segmentation errors that adversely affect downstream tasks, including flow calculation, navigation, and structural inspection. Although current topology-focused losses mark an improvement, they introduce significant computational and memory overheads. This is particularly relevant for 3D data, rendering these losses infeasible for larger volumes as well as increasingly important multi-class segmentation problems. To mitigate this, we propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations. It demonstrates overall superior performance to current state-of-the-art approaches on five public datasets for topology-preserving segmentation, while substantially reducing computational overheads by more than 90%. In doing so, we introduce the first multi-class capable loss function for thin structure segmentation, excelling in both efficiency and efficacy for topology-preservation.
- Abstract(参考訳): 容器、神経、道路、コンクリートクラックなどの細い管状構造を正確に分断することは、コンピュータビジョンにおいて重要な課題である。
DiceやCross-Entropyのような標準的なディープラーニングベースのセグメンテーション損失関数は、しばしば構造的な接続性やトポロジーを犠牲にして、ボリュームオーバーラップに焦点を当てている。
これは、フロー計算、ナビゲーション、構造検査などの下流タスクに悪影響を及ぼすセグメンテーションエラーを引き起こす可能性がある。
現在のトポロジに焦点をあてた損失は改善の兆しとなるが、計算とメモリのオーバーヘッドがかなり大きい。
これは特に3Dデータに関係しており、これらの損失は大きなボリュームでは実現不可能であり、また、より重要なマルチクラスのセグメンテーション問題も抱えている。
そこで本稿では,GPUベースの計算を低コストなCPU操作で回避し,これらの課題を効果的に解決する新しいSkeleton Recall Lossを提案する。
これは、トポロジ保存セグメンテーションのための5つのパブリックデータセットに対する現在の最先端アプローチに比べて、全体的なパフォーマンスを向上し、計算オーバーヘッドを90%以上削減する。
そこで我々は, 最薄構造セグメンテーションのための最初の多クラス能動損失関数を導入し, トポロジー保存の効率性と有効性に優れていた。
関連論文リスト
- Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
心臓磁気共鳴(CMR)画像のマルチクラスセグメンテーションは、既知の構造と構成を持つ解剖学的構成要素にデータの分離を求める。
最も一般的なCNNベースの手法は、解剖を特徴付ける空間的に拡張された特徴を無視した画素ワイズ損失関数を用いて最適化されている。
これらのアプローチは、全てのクラスラベルとクラスラベルペアのリッチなトポロジカル記述を構築することで、マルチクラスセグメンテーションのタスクに拡張する。
論文 参考訳(メタデータ) (2021-07-27T09:21:38Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Generic Perceptual Loss for Modeling Structured Output Dependencies [78.59700528239141]
トレーニングされた重みではなく、ネットワーク構造が重要であることを示す。
我々は、出力の構造化依存関係をモデル化するためにランダムに重み付けされたディープcnnが使用できることを実証する。
論文 参考訳(メタデータ) (2021-03-18T23:56:07Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - An Elastic Interaction-Based Loss Function for Medical Image
Segmentation [10.851295591782538]
本稿では,医用画像セグメンテーションのための長距離弾性相互作用に基づくトレーニング戦略を提案する。
この戦略において、CNNは予測領域の境界と実際の物体の境界との間の弾性相互作用エネルギーの誘導の下で対象領域を学習する。
実験結果から,本手法は一般的に用いられている画素単位の損失関数と比較して,大幅な改善が可能であることが示された。
論文 参考訳(メタデータ) (2020-07-06T11:49:14Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
中心線Dice (short clDice) と呼ばれる新しい類似度尺度を導入する。
理論的には、clDiceは2次元および3次元のセグメンテーションにおけるホモトピー同値までのトポロジー保存を保証する。
我々は、船舶、道路、ニューロン(2Dと3D)を含む5つの公開データセットでソフトクライス損失をベンチマークした。
論文 参考訳(メタデータ) (2020-03-16T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。