論文の概要: GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
- arxiv url: http://arxiv.org/abs/2404.03019v2
- Date: Mon, 8 Apr 2024 01:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 13:16:25.306470
- Title: GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
- Title(参考訳): GeoT: GPUの効率的なセグメント削減によるグラフニューラルネットワークのためのテンソル百科事典
- Authors: Zhongming Yu, Genghan Zhang, Hanxian Huang, Xin Chen, Jishen Zhao,
- Abstract要約: グラフニューラルネットワーク(GNN)に特化した最先端テンソル中心ライブラリGeoTを紹介する。
GeoTは、新しい設計原則を導入するだけでなく、利用可能なデザイン空間を拡大する革新的な並列アルゴリズムをデビューさせた。
GeoTは平均演算子のスピードアップが1.80倍、エンドツーエンドのスピードアップが1.68倍であることを示すことでかなり進歩した。
- 参考スコア(独自算出の注目度): 8.15747734801831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Neural Networks (GNNs) have ignited a surge of innovation, significantly enhancing the processing of geometric data structures such as graphs, point clouds, and meshes. As the domain continues to evolve, a series of frameworks and libraries are being developed to push GNN efficiency to new heights. While graph-centric libraries have achieved success in the past, the advent of efficient tensor compilers has highlighted the urgent need for tensor-centric libraries. Yet, efficient tensor-centric frameworks for GNNs remain scarce due to unique challenges and limitations encountered when implementing segment reduction in GNN contexts. We introduce GeoT, a cutting-edge tensor-centric library designed specifically for GNNs via efficient segment reduction. GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space. Importantly, GeoT is engineered for straightforward fusion within a computation graph, ensuring compatibility with contemporary tensor-centric machine learning frameworks and compilers. Setting a new performance benchmark, GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(GNN)は,グラフやポイントクラウド,メッシュなどの幾何学的データ構造の処理を大幅に強化するなど,イノベーションの急激な進展を招いている。
ドメインが進化を続けるにつれて、GNNの効率性を高めるために、一連のフレームワークとライブラリが開発されている。
グラフ中心ライブラリは過去にも成功を収めてきたが、効率的なテンソルコンパイラの出現はテンソル中心ライブラリの緊急な必要性を強調している。
しかし、GNNのセグメンテーションリダクションを実装する際に発生する固有の課題や制限のために、GNNの効率的なテンソル中心フレームワークは依然として不足している。
提案するGeoTは,GNN専用に設計された最先端のテンソル中心ライブラリである。
GeoTは、新しい設計原則を導入するだけでなく、利用可能なデザイン空間を拡大する革新的な並列アルゴリズムをデビューさせた。
重要なのは、GeoTは計算グラフ内で簡単に融合できるように設計されており、現代のテンソル中心の機械学習フレームワークやコンパイラとの互換性を保証する。
新しいパフォーマンスベンチマークを設定したGeoTは、平均演算子のスピードアップ1.80倍、エンドツーエンドのスピードアップ1.68倍を示すことで、かなり進歩した。
関連論文リスト
- CATGNN: Cost-Efficient and Scalable Distributed Training for Graph Neural Networks [7.321893519281194]
既存の分散システムは、グラフパーティショニングのためにメモリ内のグラフ全体をロードします。
低コストでスケーラブルな分散GNNトレーニングシステムであるCATGNNを提案する。
また、分散GNNトレーニングのためのSPRingという新しいストリーミング分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-02T20:55:39Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNNは、コミュニケーションのないトレーニングを実装することで、トレーニングプロセスを大幅に高速化する、分散GNNトレーニングフレームワークである。
我々は、CoFree-GNNが既存の最先端のGNNトレーニングアプローチよりも最大10倍高速なGNNトレーニングプロセスを実証した。
論文 参考訳(メタデータ) (2023-08-06T21:04:58Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs [21.63854538768414]
我々はGPUコアユニット(TCU)をベースとした最初のGNNフレームワークであるTC-GNNを提案する。
中心となるアイデアは、"スパース"GNNを高性能な"デンス"TCUと整合させることである。
厳密な実験は、最先端のDGLフレームワーク上で平均1.70のスピードアップを示している。
論文 参考訳(メタデータ) (2021-12-03T18:06:23Z) - BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant
Weight Matrices [9.406007544032848]
グラフニューラルネットワーク(GNN)は、非ユークリッドグラフデータを分析するための最先端のアルゴリズムです。
リアルタイムにGNNを推論する方法は、リソース制限のあるエッジコンピューティングプラットフォームでは難しい問題となっている。
効率的なGNN加速を実現するソフトウェアハードウェアの共同設計手法であるBlockGNNを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:09:22Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。