Methodology for Interpretable Reinforcement Learning for Optimizing Mechanical Ventilation
- URL: http://arxiv.org/abs/2404.03105v2
- Date: Thu, 09 Jan 2025 11:24:56 GMT
- Title: Methodology for Interpretable Reinforcement Learning for Optimizing Mechanical Ventilation
- Authors: Joo Seung Lee, Malini Mahendra, Anil Aswani,
- Abstract summary: Mechanical ventilation is a critical life support intervention that delivers controlled air and oxygen to a patient's lungs.
While several data-driven approaches have been proposed to optimize ventilator control strategies, they often lack interpretability and alignment with domain knowledge.
This paper presents a methodology for interpretable reinforcement learning (RL) aimed at improving mechanical ventilation control as part of connected health systems.
- Score: 2.3349787245442966
- License:
- Abstract: Mechanical ventilation is a critical life support intervention that delivers controlled air and oxygen to a patient's lungs, assisting or replacing spontaneous breathing. While several data-driven approaches have been proposed to optimize ventilator control strategies, they often lack interpretability and alignment with domain knowledge, hindering clinical adoption. This paper presents a methodology for interpretable reinforcement learning (RL) aimed at improving mechanical ventilation control as part of connected health systems. Using a causal, nonparametric model-based off-policy evaluation, we assess RL policies for their ability to enhance patient-specific outcomes-specifically, increasing blood oxygen levels (SpO2), while avoiding aggressive ventilator settings that may cause ventilator-induced lung injuries and other complications. Through numerical experiments on real-world ICU data from the MIMIC-III database, we demonstrate that our interpretable decision tree policy achieves performance comparable to state-of-the-art deep RL methods while outperforming standard behavior cloning approaches. The results highlight the potential of interpretable, data-driven decision support systems to improve safety and efficiency in personalized ventilation strategies, paving the way for seamless integration into connected healthcare environments.
Related papers
- A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre [0.0]
The study proposes an all-encompassing framework for the optimization of patient flow.
Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges.
Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms.
arXiv Detail & Related papers (2025-01-30T18:01:48Z) - Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework [2.5070297884580874]
This study introduces ConformalDQN, a distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units.
We trained and evaluated our model using ICU patient records from the MIMIC-IV database.
arXiv Detail & Related papers (2024-12-17T06:55:20Z) - Optimal Control of Mechanical Ventilators with Learned Respiratory Dynamics [38.26324086792883]
We frame the management of ventilators for patients with Acute Respiratory Distress Syndrome as a sequential decision making problem.
We implement and compare controllers based on clinical guidelines contained in the ARDSnet protocol.
We score performance in terms of measured improvement in established ARDS health markers.
arXiv Detail & Related papers (2024-11-12T17:51:45Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Towards Safe Mechanical Ventilation Treatment Using Deep Offline
Reinforcement Learning [35.10140674005337]
DeepVent is a Conservative Q-Learning (CQL) based offline Deep Reinforcement Learning (DRL) agent that learns to predict the optimal ventilator parameters for a patient to promote 90 day survival.
We find that DeepVent recommends ventilation parameters within safe ranges, as outlined in recent clinical trials.
The CQL algorithm offers additional safety by mitigating the overestimation of the value estimates of out-of-distribution states/actions.
arXiv Detail & Related papers (2022-10-05T20:41:17Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Machine Learning for Mechanical Ventilation Control (Extended Abstract) [52.65490904484772]
Mechanical ventilation is one of the most widely used therapies in the ICU.
We frame these as a control problem: ventilators must let air in and out of the patient's lungs according to a prescribed trajectory of airway pressure.
Our data-driven approach learns to control an invasive ventilator by training on a simulator itself trained on data collected from the ventilator.
This method outperforms popular reinforcement learning algorithms and even controls the physical ventilator more accurately and robustly than PID.
arXiv Detail & Related papers (2021-11-19T20:54:41Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.