Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework
- URL: http://arxiv.org/abs/2412.12597v1
- Date: Tue, 17 Dec 2024 06:55:20 GMT
- Title: Distribution-Free Uncertainty Quantification in Mechanical Ventilation Treatment: A Conformal Deep Q-Learning Framework
- Authors: Niloufar Eghbali, Tuka Alhanai, Mohammad M. Ghassemi,
- Abstract summary: This study introduces ConformalDQN, a distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units.
We trained and evaluated our model using ICU patient records from the MIMIC-IV database.
- Score: 2.5070297884580874
- License:
- Abstract: Mechanical Ventilation (MV) is a critical life-support intervention in intensive care units (ICUs). However, optimal ventilator settings are challenging to determine because of the complexity of balancing patient-specific physiological needs with the risks of adverse outcomes that impact morbidity, mortality, and healthcare costs. This study introduces ConformalDQN, a novel distribution-free conformal deep Q-learning approach for optimizing mechanical ventilation in intensive care units. By integrating conformal prediction with deep reinforcement learning, our method provides reliable uncertainty quantification, addressing the challenges of Q-value overestimation and out-of-distribution actions in offline settings. We trained and evaluated our model using ICU patient records from the MIMIC-IV database. ConformalDQN extends the Double DQN architecture with a conformal predictor and employs a composite loss function that balances Q-learning with well-calibrated probability estimation. This enables uncertainty-aware action selection, allowing the model to avoid potentially harmful actions in unfamiliar states and handle distribution shifts by being more conservative in out-of-distribution scenarios. Evaluation against baseline models, including physician policies, policy constraint methods, and behavior cloning, demonstrates that ConformalDQN consistently makes recommendations within clinically safe and relevant ranges, outperforming other methods by increasing the 90-day survival rate. Notably, our approach provides an interpretable measure of confidence in its decisions, which is crucial for clinical adoption and potential human-in-the-loop implementations.
Related papers
- Bayesian Counterfactual Prediction Models for HIV Care Retention with Incomplete Outcome and Covariate Information [0.0]
There is a need for data-driven methods for predicting retention and recommending scheduling decisions that optimize retention.
Prediction models can be useful for estimating retention rates across a range of scheduling options.
This paper presents an all-in-one approach for both predicting HIV retention and optimizing scheduling while accounting for these complexities.
arXiv Detail & Related papers (2024-10-29T19:19:38Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Methodology for Interpretable Reinforcement Learning for Optimizing Mechanical Ventilation [2.3349787245442966]
Mechanical ventilation is a critical life support intervention that delivers controlled air and oxygen to a patient's lungs.
While several data-driven approaches have been proposed to optimize ventilator control strategies, they often lack interpretability and alignment with domain knowledge.
This paper presents a methodology for interpretable reinforcement learning (RL) aimed at improving mechanical ventilation control as part of connected health systems.
arXiv Detail & Related papers (2024-04-03T23:07:24Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Towards Safe Mechanical Ventilation Treatment Using Deep Offline
Reinforcement Learning [35.10140674005337]
DeepVent is a Conservative Q-Learning (CQL) based offline Deep Reinforcement Learning (DRL) agent that learns to predict the optimal ventilator parameters for a patient to promote 90 day survival.
We find that DeepVent recommends ventilation parameters within safe ranges, as outlined in recent clinical trials.
The CQL algorithm offers additional safety by mitigating the overestimation of the value estimates of out-of-distribution states/actions.
arXiv Detail & Related papers (2022-10-05T20:41:17Z) - Distribution-Free Federated Learning with Conformal Predictions [0.0]
Federated learning aims to leverage separate institutional datasets while maintaining patient privacy.
Poor calibration and lack of interpretability may hamper widespread deployment of federated models into clinical practice.
We propose to address these challenges by incorporating an adaptive conformal framework into federated learning.
arXiv Detail & Related papers (2021-10-14T18:41:17Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.