Promatch: Extending the Reach of Real-Time Quantum Error Correction with Adaptive Predecoding
- URL: http://arxiv.org/abs/2404.03136v1
- Date: Thu, 4 Apr 2024 01:16:49 GMT
- Title: Promatch: Extending the Reach of Real-Time Quantum Error Correction with Adaptive Predecoding
- Authors: Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, Moinuddin Qureshi,
- Abstract summary: We propose a real-time adaptive predecoder that predecodes both simple and complex patterns using a locality-aware, greedy approach.
Promatch represents the first real-time decoding framework capable of decoding surface codes of distances 11 and 13.
We demonstrate that running Promatch concurrently with the recently proposed Astrea-G achieves LER equivalent to MWPM LER, $3.4times10-15$, for distance 13.
- Score: 2.3158782497981205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant quantum computing relies on Quantum Error Correction, which encodes logical qubits into data and parity qubits. Error decoding is the process of translating the measured parity bits into types and locations of errors. To prevent a backlog of errors, error decoding must be performed in real-time. Minimum Weight Perfect Matching (MWPM) is an accurate decoding algorithm for surface code, and recent research has demonstrated real-time implementations of MWPM (RT-MWPM) for a distance of up to 9. Unfortunately, beyond d=9, the number of flipped parity bits in the syndrome, referred to as the Hamming weight of the syndrome, exceeds the capabilities of existing RT-MWPM decoders. In this work, our goal is to enable larger distance RT-MWPM decoders by using adaptive predecoding that converts high Hamming weight syndromes into low Hamming weight syndromes, which are accurately decoded by the RT-MWPM decoder. An effective predecoder must balance both accuracy and coverage. In this paper, we propose Promatch, a real-time adaptive predecoder that predecodes both simple and complex patterns using a locality-aware, greedy approach. Our approach ensures two crucial factors: 1) high accuracy in prematching flipped bits, ensuring that the decoding accuracy is not hampered by the predecoder, and 2) enough coverage adjusted based on the main decoder's capability given the time constraints. Promatch represents the first real-time decoding framework capable of decoding surface codes of distances 11 and 13, achieving an LER of $2.6\times 10^{-14}$ for distance 13. Moreover, we demonstrate that running Promatch concurrently with the recently proposed Astrea-G achieves LER equivalent to MWPM LER, $3.4\times10^{-15}$, for distance 13, representing the first real-time accurate decoder for up-to a distance of 13.
Related papers
- Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code [0.0]
We introduce the Local Clustering Decoder as a solution that simultaneously achieves the accuracy and speed requirements of a real-time decoding system.
Our decoder is implemented on FPGAs and exploits hardware parallelism to keep pace with the fastest qubit types.
It enables one million error-free quantum operations with 4x fewer physical qubits when compared to standard non-adaptive decoding.
arXiv Detail & Related papers (2024-11-15T16:43:59Z) - Let the Code LLM Edit Itself When You Edit the Code [50.46536185784169]
underlinetextbfPositional textbfIntegrity textbfEncoding (PIE)
PIE reduces computational overhead by over 85% compared to the standard full recomputation approach.
Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach.
arXiv Detail & Related papers (2024-07-03T14:34:03Z) - Spanning Tree Matching Decoder for Quantum Surface Codes [8.62986288837424]
We introduce the spanning tree matching (STM) decoder for surface codes, which guarantees the error correction capability up to the code's designed distance.
A comparative analysis reveals that the STM decoder, at the cost of a slight performance degradation, provides a substantial advantage in decoding time.
We propose an even more simplified and faster algorithm, the Rapid-Fire (RFire) decoder, designed for scenarios where decoding speed is a critical requirement.
arXiv Detail & Related papers (2024-05-02T10:12:11Z) - A blockBP decoder for the surface code [0.0]
We present a new decoder for the surface code, which combines the accuracy of the tensor-network decoders with the efficiency and parallelism of the belief-propagation algorithm.
Our decoder is therefore a belief-propagation decoder that works in the degenerate maximal likelihood decoding framework.
arXiv Detail & Related papers (2024-02-07T13:32:32Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Belief propagation as a partial decoder [0.0]
We present a new two-stage decoder that accelerates the decoding cycle and boosts accuracy.
In the first stage, a partial decoder based on belief propagation is used to correct errors that occurred with high probability.
In the second stage, a conventional decoder corrects any remaining errors.
arXiv Detail & Related papers (2023-06-29T17:44:20Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Sparse Blossom: correcting a million errors per core second with
minimum-weight matching [0.0]
We introduce a fast implementation of the minimum-weight perfect matching (MWPM) decoder.
Our algorithm, which we call sparse blossom, is a variant of the blossom algorithm which directly solves the decoding problem relevant to quantum error correction.
arXiv Detail & Related papers (2023-03-28T12:42:54Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.