MonoCD: Monocular 3D Object Detection with Complementary Depths
- URL: http://arxiv.org/abs/2404.03181v1
- Date: Thu, 4 Apr 2024 03:30:49 GMT
- Title: MonoCD: Monocular 3D Object Detection with Complementary Depths
- Authors: Longfei Yan, Pei Yan, Shengzhou Xiong, Xuanyu Xiang, Yihua Tan,
- Abstract summary: Depth estimation is an essential but challenging subtask of monocular 3D object detection.
We propose to increase the complementarity of depths with two novel designs.
Experiments on the KITTI benchmark demonstrate that our method achieves state-of-the-art performance without introducing extra data.
- Score: 9.186673054867866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D object detection has attracted widespread attention due to its potential to accurately obtain object 3D localization from a single image at a low cost. Depth estimation is an essential but challenging subtask of monocular 3D object detection due to the ill-posedness of 2D to 3D mapping. Many methods explore multiple local depth clues such as object heights and keypoints and then formulate the object depth estimation as an ensemble of multiple depth predictions to mitigate the insufficiency of single-depth information. However, the errors of existing multiple depths tend to have the same sign, which hinders them from neutralizing each other and limits the overall accuracy of combined depth. To alleviate this problem, we propose to increase the complementarity of depths with two novel designs. First, we add a new depth prediction branch named complementary depth that utilizes global and efficient depth clues from the entire image rather than the local clues to reduce the correlation of depth predictions. Second, we propose to fully exploit the geometric relations between multiple depth clues to achieve complementarity in form. Benefiting from these designs, our method achieves higher complementarity. Experiments on the KITTI benchmark demonstrate that our method achieves state-of-the-art performance without introducing extra data. In addition, complementary depth can also be a lightweight and plug-and-play module to boost multiple existing monocular 3d object detectors. Code is available at https://github.com/elvintanhust/MonoCD.
Related papers
- OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
arXiv Detail & Related papers (2024-07-15T14:29:15Z) - MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts [6.639648061168067]
We propose MonoPGC, a novel end-to-end Monocular 3D object detection framework with rich Pixel Geometry Contexts.
We introduce the pixel depth estimation as our auxiliary task and design depth cross-attention pyramid module (DCPM) to inject local and global depth geometry knowledge into visual features.
In addition, we present the depth-space-aware transformer (DSAT) to integrate 3D space position and depth-aware features efficiently.
arXiv Detail & Related papers (2023-02-21T09:21:58Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
We propose a method to boost the RGB image-based 3D detector by jointly training the detection network with a depth prediction loss analogous to the depth estimation task.
Our novel object-centric depth prediction loss focuses on depth around foreground objects, which is important for 3D object detection.
Our depth regression model is further trained to predict the uncertainty of depth to represent the 3D confidence of objects.
arXiv Detail & Related papers (2022-10-29T11:32:28Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection [61.89277940084792]
We introduce the first DETR framework for Monocular DEtection with a depth-guided TRansformer, named MonoDETR.
We formulate 3D object candidates as learnable queries and propose a depth-guided decoder to conduct object-scene depth interactions.
On KITTI benchmark with monocular images as input, MonoDETR achieves state-of-the-art performance and requires no extra dense depth annotations.
arXiv Detail & Related papers (2022-03-24T19:28:54Z) - MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer [25.61949580447076]
We propose MonoDTR, a novel end-to-end depth-aware transformer network for monocular 3D object detection.
It mainly consists of two components: (1) the Depth-Aware Feature Enhancement (DFE) module that implicitly learns depth-aware features without requiring extra computation, and (2) the Depth-Aware Transformer (DTR) module that globally integrates context- and depth-aware features.
Our proposed depth-aware modules can be easily plugged into existing image-only monocular 3D object detectors to improve the performance.
arXiv Detail & Related papers (2022-03-21T13:40:10Z) - MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D
Object Detection [10.377424252002792]
monocular 3D object detection lacks accurate depth recovery ability.
Deep neural network (DNN) enables monocular depth-sensing from high-level learned features.
We propose a joint semantic and geometric cost volume to model the depth error.
arXiv Detail & Related papers (2022-03-16T11:54:10Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.