論文の概要: AGL-NET: Aerial-Ground Cross-Modal Global Localization with Varying Scales
- arxiv url: http://arxiv.org/abs/2404.03187v2
- Date: Wed, 09 Oct 2024 03:55:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:27:48.064875
- Title: AGL-NET: Aerial-Ground Cross-Modal Global Localization with Varying Scales
- Title(参考訳): AGL-NET: 空域のクロスモーダルなグローバルなローカライゼーション
- Authors: Tianrui Guan, Ruiqi Xian, Xijun Wang, Xiyang Wu, Mohamed Elnoor, Daeun Song, Dinesh Manocha,
- Abstract要約: 我々は,LiDAR点雲と衛星地図を用いたグローバルローカライゼーションのための新しい学習手法であるAGL-NETを提案する。
我々は,特徴マッチングのための画像と点間の表現ギャップを埋めること,グローバルビューとローカルビューのスケールの相違に対処すること,という2つの重要な課題に取り組む。
- 参考スコア(独自算出の注目度): 45.315661330785275
- License:
- Abstract: We present AGL-NET, a novel learning-based method for global localization using LiDAR point clouds and satellite maps. AGL-NET tackles two critical challenges: bridging the representation gap between image and points modalities for robust feature matching, and handling inherent scale discrepancies between global view and local view. To address these challenges, AGL-NET leverages a unified network architecture with a novel two-stage matching design. The first stage extracts informative neural features directly from raw sensor data and performs initial feature matching. The second stage refines this matching process by extracting informative skeleton features and incorporating a novel scale alignment step to rectify scale variations between LiDAR and map data. Furthermore, a novel scale and skeleton loss function guides the network toward learning scale-invariant feature representations, eliminating the need for pre-processing satellite maps. This significantly improves real-world applicability in scenarios with unknown map scales. To facilitate rigorous performance evaluation, we introduce a meticulously designed dataset within the CARLA simulator specifically tailored for metric localization training and assessment. The code and data can be accessed at https://github.com/rayguan97/AGL-Net.
- Abstract(参考訳): 我々は,LiDAR点雲と衛星地図を用いたグローバルローカライゼーションのための新しい学習手法であるAGL-NETを提案する。
AGL-NETは、ロバストな特徴マッチングのために、イメージとポイントの間の表現ギャップを埋めること、グローバルビューとローカルビューの間の固有のスケールの相違に対処する、という2つの重要な課題に取り組む。
これらの課題に対処するため、AGL-NETは新たな2段階マッチング設計で統一されたネットワークアーキテクチャを活用している。
第1段階は、生センサデータから直接情報的ニューラル特徴を抽出し、初期特徴マッチングを実行する。
第2段階は、情報的骨格の特徴を抽出し、新しいスケールアライメントステップを導入して、LiDARとマップデータのスケール変動を補正することにより、このマッチングプロセスを洗練する。
さらに、新しいスケールと骨格損失関数は、スケール不変の特徴表現の学習に向けてネットワークを誘導し、衛星地図の事前処理の必要性を排除する。
これにより、未知のマップスケールのシナリオにおける実世界の適用性が大幅に向上する。
厳密な性能評価を容易にするため,メカニカルローカライゼーショントレーニングとアセスメントに適したCARLAシミュレータ内に,精密に設計されたデータセットを導入する。
コードとデータはhttps://github.com/rayguan97/AGL-Netでアクセスできる。
関連論文リスト
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
我々はスケール空間理論に頼って凸層を再構築する。
我々はSCale AttentioN Conv Neural Network(textbfSCAN-CNN)という新しいスタイルを構築した。
単発方式として、推論はマルチショット融合よりも効率的である。
論文 参考訳(メタデータ) (2022-09-19T06:35:04Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
本稿では,空間的コンテキスト情報を中心として,新たなネットワークである Triple Context Network (TC-Net) を提案する。
我々のネットワークはオープンデータセットATLASで評価され、最高スコアは0.594、ハウスドルフ距離は27.005mm、平均対称性表面距離は7.137mmである。
論文 参考訳(メタデータ) (2022-02-28T11:12:16Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
本稿では,これらの問題に対処する軽量ORSI-SODソリューションであるCorrNetを提案する。
それぞれのコンポーネントのパラメータと計算を減らし、CorrNetは4.09Mのパラメータしか持たず、21.09GのFLOPで実行している。
2つの公開データセットの実験結果から、私たちの軽量なCorrNetは、26の最先端メソッドと比較して、競争力やパフォーマンスがさらに向上することが示された。
論文 参考訳(メタデータ) (2022-01-20T08:28:01Z) - DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor
Points [15.953570826460869]
2つの画像間の密接な対応を確立することは、基本的なコンピュータビジョンの問題である。
我々は、アンカーポイントに条件付きグラフ構造化ニューラルネットワークを用いたDense対応学習のための新しいソリューションであるDenseGAPを紹介する。
提案手法は,ほとんどのベンチマークにおいて対応学習の最先端化を図っている。
論文 参考訳(メタデータ) (2021-12-13T18:59:30Z) - Focus on Local: Detecting Lane Marker from Bottom Up via Key Point [10.617793053931964]
本研究では,局所パターンのモデル化とグローバルな構造予測に焦点をあてた新しいレーンマーカー検出ソリューションFOLOLaneを提案する。
具体的には、CNNは2つの異なる頭部を持つ低複雑局所パターンをモデル化し、第1は鍵点の存在を予測し、第2は局所範囲における鍵点の位置を洗練し、同じレーン線の鍵点を相関させる。
論文 参考訳(メタデータ) (2021-05-28T08:59:14Z) - Global Context Aware RCNN for Object Detection [1.1939762265857436]
我々はGCA (Global Context Aware) RCNNと呼ばれる新しいエンドツーエンドのトレーニング可能なフレームワークを提案する。
GCAフレームワークの中核となるコンポーネントは、グローバルな特徴ピラミッドとアテンション戦略の両方を特徴抽出と特徴改善に使用する、コンテキスト認識メカニズムである。
最後に,モデルの複雑さと計算負担をわずかに増加させる軽量バージョンを提案する。
論文 参考訳(メタデータ) (2020-12-04T14:56:46Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。