論文の概要: Classification of Nasopharyngeal Cases using DenseNet Deep Learning Architecture
- arxiv url: http://arxiv.org/abs/2404.03188v1
- Date: Thu, 4 Apr 2024 04:16:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:53:27.706394
- Title: Classification of Nasopharyngeal Cases using DenseNet Deep Learning Architecture
- Title(参考訳): DenseNetディープラーニングアーキテクチャを用いた鼻咽喉科症例の分類
- Authors: W. S. H. M. W. Ahmad, M. F. A. Fauzi, M. K. Abdullahi, Jenny T. H. Lee, N. S. A. Basry, A Yahaya, A. M. Ismail, A. Adam, Elaine W. L. Chan, F. S. Abas,
- Abstract要約: 鼻咽頭癌(Nasopharyngeal carcinoma, NPC)は, 東南アジアで最多の死亡例である。
NPCは、初期無症候性であるため、診断が遅くなることが多い。
本論文は,NPC,NPI,正常症例の違いを特定するための最初の取り組みである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nasopharyngeal carcinoma (NPC) is one of the understudied yet deadliest cancers in South East Asia. In Malaysia, the prevalence is identified mainly in Sarawak, among the ethnic of Bidayuh. NPC is often late-diagnosed because it is asymptomatic at the early stage. There are several tissue representations from the nasopharynx biopsy, such as nasopharyngeal inflammation (NPI), lymphoid hyperplasia (LHP), nasopharyngeal carcinoma (NPC) and normal tissue. This paper is our first initiative to identify the difference between NPC, NPI and normal cases. Seven whole slide images (WSIs) with gigapixel resolutions from seven different patients and two hospitals were experimented with using two test setups, consisting of a different set of images. The tissue regions are patched into smaller blocks and classified using DenseNet architecture with 21 dense layers. Two tests are carried out, each for proof of concept (Test 1) and real-test scenario (Test 2). The accuracy achieved for NPC class is 94.8% for Test 1 and 67.0% for Test 2.
- Abstract(参考訳): 鼻咽頭癌(Nasopharyngeal carcinoma, NPC)は, 東南アジアで最多の死亡例である。
マレーシアでは、主にサラワク(英語版)でビダウ族(英語版)と同一視されている。
NPCは、初期無症候性であるため、診断が遅くなることが多い。
鼻咽頭生検には鼻咽頭炎症(NPI)、リンパ性過形成(LHP)、鼻咽頭癌(NPC)、正常組織などの組織像がある。
本論文は,NPC,NPI,正常症例の違いを特定するための最初の取り組みである。
7つの異なる患者と2つの病院からのギガピクセル解像度のスライド画像(WSI)を、異なる画像からなる2つのテストセットを用いて実験した。
組織領域は小さなブロックにパッチされ、21の層を持つDenseNetアーキテクチャを使って分類される。
概念実証(テスト1)と実テストシナリオ(テスト2)の2つのテストが実施されます。
NPCクラスで達成される精度は、テスト1では94.8%、テスト2では67.0%である。
関連論文リスト
- Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) は, アンカークエリの改善と前景のサンプリング損失による各病変の分割と分類を行う。
PLANは95%と96%の患者レベルの感度と特異性を達成している。
造影CTでは, 病変レベルの検出精度, リコール, 分類精度は92%, 89%, 86%であり, CNNやトランスフォーマーよりも優れていた。
論文 参考訳(メタデータ) (2023-07-17T06:21:45Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - Medical Application of Geometric Deep Learning for the Diagnosis of
Glaucoma [60.42955087779866]
シンガポール国立眼科における視神経頭部の3DスキャンをSpectralis OCTで477緑内障と2,296名の非緑内障患者に対して行った。
全巻は、ディープラーニングを用いて自動的にセグメンテーションされ、7つの主要な神経組織と結合組織が識別された。
ポイントネットは、3Dポイントクラウドとして表されるONHのみから頑健な緑内障の診断を行うことができた。
論文 参考訳(メタデータ) (2022-04-14T14:55:25Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - 3D Structural Analysis of the Optic Nerve Head to Robustly Discriminate
Between Papilledema and Optic Disc Drusen [44.754910718620295]
我々は3次元光コヒーレンストモグラフィー(OCT)スキャンで視神経頭部(ONH)の組織構造を同定する深層学習アルゴリズムを開発した。
1: ODD, 2: papilledema, 3: healthy) の分類を150 OCTボリュームで行うように設計した。
われわれのAIアプローチは,1本のCTスキャンを用いて,パピレデマからODDを正確に識別する。
論文 参考訳(メタデータ) (2021-12-18T17:05:53Z) - Automatic tumour segmentation in H&E-stained whole-slide images of the
pancreas [2.4431235585344475]
病気の検出とセグメンテーションの精度のバランスをとるために,マルチタスク畳み込みニューラルネットワークを提案する。
異なる解像度で29人の患者を対象にアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-01T22:05:15Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
原発不明癌 (CUP) は腫瘍由来の原発性解剖学的部位を特定できない診断群である。
最近の研究は、腫瘍原点の同定にゲノム学と転写学を使うことに重点を置いている。
深層学習に基づくCUPの差分診断が可能な計算病理アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-24T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。