Statistical and Topological Properties of Gaussian Smoothed Sliced
Probability Divergences
- URL: http://arxiv.org/abs/2110.10524v1
- Date: Wed, 20 Oct 2021 12:21:32 GMT
- Title: Statistical and Topological Properties of Gaussian Smoothed Sliced
Probability Divergences
- Authors: Alain Rakotomamonjy, Mokhtar Z. Alaya (LMAC), Maxime Berar (DocApp -
LITIS), Gilles Gasso (DocApp - LITIS)
- Abstract summary: We show that smoothing and slicing preserve the metric property and the weak topology.
We also provide results on the sample complexity of such divergences.
- Score: 9.08047281767226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian smoothed sliced Wasserstein distance has been recently introduced
for comparing probability distributions, while preserving privacy on the data.
It has been shown, in applications such as domain adaptation, to provide
performances similar to its non-private (non-smoothed) counterpart. However,
the computational and statistical properties of such a metric is not yet been
well-established. In this paper, we analyze the theoretical properties of this
distance as well as those of generalized versions denoted as Gaussian smoothed
sliced divergences. We show that smoothing and slicing preserve the metric
property and the weak topology. We also provide results on the sample
complexity of such divergences. Since, the privacy level depends on the amount
of Gaussian smoothing, we analyze the impact of this parameter on the
divergence. We support our theoretical findings with empirical studies of
Gaussian smoothed and sliced version of Wassertein distance, Sinkhorn
divergence and maximum mean discrepancy (MMD). In the context of
privacy-preserving domain adaptation, we confirm that those Gaussian smoothed
sliced Wasserstein and MMD divergences perform very well while ensuring data
privacy.
Related papers
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Gaussian-Smoothed Sliced Probability Divergences [15.123608776470077]
We show that smoothing and slicing preserve the metric property and the weak topology.
We also derive other properties, including continuity, of different divergences with respect to the smoothing parameter.
arXiv Detail & Related papers (2024-04-04T07:55:46Z) - Differentially Private Gradient Flow based on the Sliced Wasserstein Distance [59.1056830438845]
We introduce a novel differentially private generative modeling approach based on a gradient flow in the space of probability measures.
Experiments show that our proposed model can generate higher-fidelity data at a low privacy budget.
arXiv Detail & Related papers (2023-12-13T15:47:30Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
arXiv Detail & Related papers (2023-07-31T06:11:57Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Convergence and concentration properties of constant step-size SGD
through Markov chains [0.0]
We consider the optimization of a smooth and strongly convex objective using constant step-size gradient descent (SGD)
We show that, for unbiased gradient estimates with mildly controlled variance, the iteration converges to an invariant distribution in total variation distance.
All our results are non-asymptotic and their consequences are discussed through a few applications.
arXiv Detail & Related papers (2023-06-20T12:36:28Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Convergence of Gaussian-smoothed optimal transport distance with
sub-gamma distributions and dependent samples [12.77426855794452]
This paper provides convergence guarantees for estimating the GOT distance under more general settings.
A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy distances.
arXiv Detail & Related papers (2021-02-28T04:30:23Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.