Schroedinger's Threshold: When the AUC doesn't predict Accuracy
- URL: http://arxiv.org/abs/2404.03344v2
- Date: Mon, 27 May 2024 10:33:40 GMT
- Title: Schroedinger's Threshold: When the AUC doesn't predict Accuracy
- Authors: Juri Opitz,
- Abstract summary: Area Under Curve measure (AUC) seems apt to evaluate and compare diverse models.
We show that the AUC yields an academic and optimistic notion of accuracy that can misalign with the actual accuracy observed in application.
- Score: 6.091702876917282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Area Under Curve measure (AUC) seems apt to evaluate and compare diverse models, possibly without calibration. An important example of AUC application is the evaluation and benchmarking of models that predict faithfulness of generated text. But we show that the AUC yields an academic and optimistic notion of accuracy that can misalign with the actual accuracy observed in application, yielding significant changes in benchmark rankings. To paint a more realistic picture of downstream model performance (and prepare a model for actual application), we explore different calibration modes, testing calibration data and method.
Related papers
- Reassessing How to Compare and Improve the Calibration of Machine Learning Models [7.183341902583164]
A machine learning model is calibrated if its predicted probability for an outcome matches the observed frequency for that outcome conditional on the model prediction.
We show that there exist trivial recalibration approaches that can appear seemingly state-of-the-art unless calibration and prediction metrics are accompanied by additional generalization metrics.
arXiv Detail & Related papers (2024-06-06T13:33:45Z) - Optimizing Calibration by Gaining Aware of Prediction Correctness [30.619608580138802]
Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class.
We propose a new post-hoc calibration objective derived from the aim of calibration.
arXiv Detail & Related papers (2024-04-19T17:25:43Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Revisiting Calibration for Question Answering [16.54743762235555]
We argue that the traditional evaluation of calibration does not reflect usefulness of the model confidence.
We propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions.
arXiv Detail & Related papers (2022-05-25T05:49:56Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate.
We propose an optimization method that leverages the relationship between accuracy and uncertainty as an anchor for uncertainty calibration.
We demonstrate our approach with mean-field variational inference and compare with state-of-the-art methods.
arXiv Detail & Related papers (2020-12-14T20:19:21Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.