論文の概要: REACT: Revealing Evolutionary Action Consequence Trajectories for Interpretable Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.03359v1
- Date: Thu, 4 Apr 2024 10:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:01:15.969263
- Title: REACT: Revealing Evolutionary Action Consequence Trajectories for Interpretable Reinforcement Learning
- Title(参考訳): REACT:解釈型強化学習のための進化的行動系列軌道の解明
- Authors: Philipp Altmann, Céline Davignon, Maximilian Zorn, Fabian Ritz, Claudia Linnhoff-Popien, Thomas Gabor,
- Abstract要約: 強化学習の解釈可能性を高めるために,Revealing Evolutionary Action Consequence Trajectories (REACT)を提案する。
トレーニング中に学習した最適な振る舞いに基づくRLモデルの一般的な実践とは対照的に、エッジケースの軌跡の範囲を考慮すると、それらの固有の振る舞いをより包括的に理解することができると仮定する。
本研究は,RLモデルの動作の微妙な側面を最適性能を超えて明らかにし,解釈可能性の向上に寄与することを示す。
- 参考スコア(独自算出の注目度): 7.889696505137217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance the interpretability of Reinforcement Learning (RL), we propose Revealing Evolutionary Action Consequence Trajectories (REACT). In contrast to the prevalent practice of validating RL models based on their optimal behavior learned during training, we posit that considering a range of edge-case trajectories provides a more comprehensive understanding of their inherent behavior. To induce such scenarios, we introduce a disturbance to the initial state, optimizing it through an evolutionary algorithm to generate a diverse population of demonstrations. To evaluate the fitness of trajectories, REACT incorporates a joint fitness function that encourages both local and global diversity in the encountered states and chosen actions. Through assessments with policies trained for varying durations in discrete and continuous environments, we demonstrate the descriptive power of REACT. Our results highlight its effectiveness in revealing nuanced aspects of RL models' behavior beyond optimal performance, thereby contributing to improved interpretability.
- Abstract(参考訳): 強化学習(RL)の解釈可能性を高めるため,Revealing Evolutionary Action Consequence Trajectories (REACT)を提案する。
トレーニング中に学習した最適な振る舞いに基づいてRLモデルを検証するという一般的な実践とは対照的に,エッジケースの軌道の幅を考慮すると,RLモデル固有の振る舞いをより包括的に理解することができると仮定する。
このようなシナリオを導き出すため、進化的アルゴリズムによって初期状態に乱れを導入し、多様な人口のデモを生成する。
トラジェクトリーの適合性を評価するために、REACTは、遭遇した状態と選択された行動の局所的およびグローバルな多様性を促進する共同フィットネス機能を組み込んだ。
離散的かつ連続的な環境において、様々な期間で訓練された政策による評価を通じて、REACTの記述力を示す。
本研究は,RLモデルの動作の微妙な側面を最適性能を超えて明らかにし,解釈可能性の向上に寄与することを示す。
関連論文リスト
- ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - D-Shape: Demonstration-Shaped Reinforcement Learning via Goal
Conditioning [48.57484755946714]
D-Shapeは模倣学習(IL)と強化学習(RL)を組み合わせた新しい手法である
本稿では,ILとRLを組み合わせた新たな手法であるD-Shapeを紹介する。
スパース・リワード・グリッドワールド領域におけるD-Shapeの有効性を実験的に検証し、サンプル効率の観点からRLよりも改善し、最適ポリシーに一貫した収束を示す。
論文 参考訳(メタデータ) (2022-10-26T02:28:32Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
観察からの模倣学習は、人間の学習と同様の方法で政策学習を記述する。
本稿では,解釈可能な収束度と性能測定値とともに,非逆学習型観測手法を提案する。
論文 参考訳(メタデータ) (2022-02-09T08:38:50Z) - Off-Dynamics Inverse Reinforcement Learning from Hetero-Domain [11.075036222901417]
そこで本研究では,実世界の実演を参考に,シミュレータの報酬関数を学習するヘテロドメインからの逆強化学習を提案する。
この手法の背景にある直感は、報酬関数は専門家を模倣するだけでなく、シミュレータと現実世界のダイナミクスの違いに応じて調整された行動を奨励すべきである。
論文 参考訳(メタデータ) (2021-10-21T19:23:15Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
モデルが不正確または偏りがある場合、虚構軌跡はアクション値とポリシー関数を訓練するために欠落する可能性がある。
虚構遷移を適応的に再重み付けし, 未生成軌跡の負の効果を低減させる。
提案手法は,複数のタスクにおいて,最先端のモデルベースおよびモデルフリーなRLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2021-04-09T03:13:35Z) - Explaining Conditions for Reinforcement Learning Behaviors from Real and
Imagined Data [3.3517146652431378]
本稿では,課題実行戦略や成果に繋がる経験的条件を識別する,人間解釈可能な抽象行動モデルを生成する手法を提案する。
提案手法は、状態表現から経験的特徴を抽出し、トラジェクトリから戦略記述子を抽象化し、解釈可能な決定木を訓練する。
本稿では,環境との相互作用から生成された軌道データと,モデルに基づくRL設定において,学習された確率的世界モデルから得られた軌道データについて述べる。
論文 参考訳(メタデータ) (2020-11-17T23:40:47Z) - Reinforcement Learning through Active Inference [62.997667081978825]
アクティブ推論のアイデアが従来の強化学習アプローチをどのように強化するかを示す。
我々は、将来望まれる自由エネルギーという、意思決定のための新しい目標を開発し、実装する。
得られたアルゴリズムが探索および利用に成功し、また、スパース、ウェル形状、報酬のないいくつかの挑戦的RLベンチマークにおいて頑健な性能を達成することを実証した。
論文 参考訳(メタデータ) (2020-02-28T10:28:21Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。