A Methodology to Study the Impact of Spiking Neural Network Parameters considering Event-Based Automotive Data
- URL: http://arxiv.org/abs/2404.03493v3
- Date: Fri, 13 Sep 2024 10:42:00 GMT
- Title: A Methodology to Study the Impact of Spiking Neural Network Parameters considering Event-Based Automotive Data
- Authors: Iqra Bano, Rachmad Vidya Wicaksana Putra, Alberto Marchisio, Muhammad Shafique,
- Abstract summary: We propose a novel methodology to systematically study and analyze the impact of SNN parameters considering event-based automotive data.
We show that our methodology can improve the SNN models for Autonomous Driving systems than the state-of-the-art.
Our research work provides a set of guidelines for SNN parameter enhancements, thereby enabling the practical developments of SNN-based AD systems.
- Score: 5.59354286094951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Driving (AD) systems are considered as the future of human mobility and transportation. Solving computer vision tasks such as image classification and object detection/segmentation, with high accuracy and low power/energy consumption, is highly needed to realize AD systems in real life. These requirements can potentially be satisfied by Spiking Neural Networks (SNNs). However, the state-of-the-art works in SNN-based AD systems still focus on proposing network models that can achieve high accuracy, and they have not systematically studied the roles of SNN parameters when used for learning event-based automotive data. Therefore, we still lack understanding of how to effectively develop SNN models for AD systems. Toward this, we propose a novel methodology to systematically study and analyze the impact of SNN parameters considering event-based automotive data, then leverage this analysis for enhancing SNN developments. To do this, we first explore different settings of SNN parameters that directly affect the learning mechanism (i.e., batch size, learning rate, neuron threshold potential, and weight decay), then analyze the accuracy results. Afterward, we propose techniques that jointly improve SNN accuracy and reduce training time. Experimental results show that our methodology can improve the SNN models for AD systems than the state-of-the-art, as it achieves higher accuracy (i.e., 86%) for the NCARS dataset, and it can also achieve iso-accuracy (i.e., ~85% with standard deviation less than 0.5%) while speeding up the training time by 1.9x. In this manner, our research work provides a set of guidelines for SNN parameter enhancements, thereby enabling the practical developments of SNN-based AD systems.
Related papers
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
Spiking neural networks (SNNs) are promising solutions for implementing neural networks in neuromorphic devices.
However, the nondifferentiable nature of SNN neurons makes it a challenge to train them.
In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs.
arXiv Detail & Related papers (2024-09-12T06:22:44Z) - BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation [20.34272550256856]
Spiking neural networks (SNNs) mimic biological neural system to convey information via discrete spikes.
Our work achieves state-of-the-art performance for training SNNs on both static and neuromorphic datasets.
arXiv Detail & Related papers (2024-07-12T08:17:24Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs)
In this paper, we study the impact of skip connections on SNNs and propose a hyper parameter optimization technique that adapts models from ANN to SNN.
We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs.
arXiv Detail & Related papers (2023-03-23T07:57:32Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.