AI and the Problem of Knowledge Collapse
- URL: http://arxiv.org/abs/2404.03502v2
- Date: Mon, 22 Apr 2024 14:18:42 GMT
- Title: AI and the Problem of Knowledge Collapse
- Authors: Andrew J. Peterson,
- Abstract summary: We identify conditions under which AI, by reducing the cost of access to certain modes of knowledge, can paradoxically harm public understanding.
We provide a simple model in which a community of learners or innovators choose to use traditional methods or to rely on a discounted AI-assisted process.
In our default model, a 20% discount on AI-generated content generates public beliefs 2.3 times further from the truth than when there is no discount.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While artificial intelligence has the potential to process vast amounts of data, generate new insights, and unlock greater productivity, its widespread adoption may entail unforeseen consequences. We identify conditions under which AI, by reducing the cost of access to certain modes of knowledge, can paradoxically harm public understanding. While large language models are trained on vast amounts of diverse data, they naturally generate output towards the 'center' of the distribution. This is generally useful, but widespread reliance on recursive AI systems could lead to a process we define as "knowledge collapse", and argue this could harm innovation and the richness of human understanding and culture. However, unlike AI models that cannot choose what data they are trained on, humans may strategically seek out diverse forms of knowledge if they perceive them to be worthwhile. To investigate this, we provide a simple model in which a community of learners or innovators choose to use traditional methods or to rely on a discounted AI-assisted process and identify conditions under which knowledge collapse occurs. In our default model, a 20% discount on AI-generated content generates public beliefs 2.3 times further from the truth than when there is no discount. An empirical approach to measuring the distribution of LLM outputs is provided in theoretical terms and illustrated through a specific example comparing the diversity of outputs across different models and prompting styles. Finally, based on the results, we consider further research directions to counteract such outcomes.
Related papers
- The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine [5.126042819606137]
We focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.
Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.
Federated learning enables learning large-scale models without exposing sensitive personal health information.
arXiv Detail & Related papers (2022-11-17T03:32:00Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Conceptual Modeling and Artificial Intelligence: Mutual Benefits from
Complementary Worlds [0.0]
We are interested in tackling the intersection of the two, thus far, mostly isolated approached disciplines of CM and AI.
The workshop embraces the assumption, that manifold mutual benefits can be realized by i) investigating what Conceptual Modeling (CM) can contribute to AI, and ii) the other way around.
arXiv Detail & Related papers (2021-10-16T18:42:09Z) - DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense
Knowledge [42.08569149041291]
We propose an alternative commonsense knowledge acquisition framework DISCOS.
DISCOS populates expensive commonsense knowledge to more affordable linguistic knowledge resources.
We can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER.
arXiv Detail & Related papers (2021-01-01T03:30:38Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
We investigate how AI models can be used to create and detect deceptive explanations.
As an empirical evaluation, we focus on text classification and alter the explanations generated by GradCAM.
We evaluate the effect of deceptive explanations on users in an experiment with 200 participants.
arXiv Detail & Related papers (2020-01-21T16:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.