論文の概要: Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization
- arxiv url: http://arxiv.org/abs/2404.03605v2
- Date: Mon, 26 Aug 2024 20:48:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 19:29:21.816989
- Title: Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization
- Title(参考訳): アクティベーション規則化による言語モデル量子化における外部チャネルの影響の緩和
- Authors: Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, Yoon Kim,
- Abstract要約: 言語モデルには、平均値が他のチャネルよりも桁違いに高い外れ値チャネルが含まれていることが知られている。
本稿では,QAT(Quantization-Aware Training)とアクティベーション・カルトシス・正規化(Activation Kurtosis regularization)によって,レイヤの入力を正規化する戦略を提案する。
入力と出力の両方を正規化することは、入力量子化の難しさを重みに"移行"するのを防ぐために重要であることを示す。
- 参考スコア(独自算出の注目度): 62.15918574997175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of accurate quantization for language models, where both the weights and activations are uniformly quantized to 4 bits per parameter, the lowest bitwidth format natively supported by GPU hardware. In this context, the key challenge is activation quantization: it is known that language models contain outlier channels whose values on average are orders of magnitude higher than than other channels, which prevents accurate low-bitwidth quantization with known techniques. We systematically study this phenomena and find that these outlier channels emerge early in training, and that they occur more frequently in layers with residual streams. We then propose a simple strategy which regularizes a layer's inputs via quantization-aware training (QAT) and its outputs via activation kurtosis regularization. We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights, which makes post-training quantization (PTQ) of weights more difficult. When combined with weight PTQ, we show that our approach can obtain a W4A4 model that performs competitively to the standard-precision W16A16 baseline.
- Abstract(参考訳): 重みとアクティベーションが一様にパラメータ毎に4ビットに量子化され、GPUハードウェアがネイティブにサポートしている最下位ビット幅フォーマットである言語モデルの正確な量子化の問題を考察する。
この文脈では、アクティベーション量子化が鍵となる課題である: 言語モデルには、平均値が他のチャネルよりも桁違いに高い外部チャネルが含まれていることが知られており、既知の技術による正確な低ビット幅量子化を防止する。
我々はこの現象を体系的に研究し、トレーニングの初期段階にこれらの異常チャネルが出現し、残留ストリームを持つ層でより頻繁に発生することを発見した。
そこで我々は,QAT(Quantization-Aware Training)とアクティベーション・カルトシス・正規化(Activation Kurtosis regularization)によって,レイヤの入力を正規化する簡単な戦略を提案する。
入力と出力の両方を正規化することは、入力量子化の難しさを重みに"移行"することを防ぐために重要であり、これにより重みのポストトレーニング量子化(PTQ)がより困難になることを示す。
重み付きPTQと組み合わせることで,標準精度のW16A16ベースラインと競合するW4A4モデルが得られることを示す。
関連論文リスト
- GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - PTQ4DiT: Post-training Quantization for Diffusion Transformers [52.902071948957186]
ポストトレーニング量子化(PTQ)は、計算とメモリフットプリントを大幅に削減できる高速でデータ効率のソリューションとして登場した。
提案するPTQ4DiTは,DiTのための特別に設計されたPTQ手法である。
PTQ4DiTは8ビットの精度でDiTの量子化に成功した。
論文 参考訳(メタデータ) (2024-05-25T02:02:08Z) - LLM-FP4: 4-Bit Floating-Point Quantized Transformers [38.23587031169402]
大規模言語モデル(LLM)における重みとアクティベーションを4ビット浮動小数点値まで定量化するLLM-FP4を提案する。
整数量子化と比較すると、浮動小数点(FP)量子化はより柔軟であり、長い尾や鐘のような分布を扱うことができる。
LLaMA-13Bの重みとアクティベーションの両方を4ビットに定量化し,平均スコア63.1を得る。
論文 参考訳(メタデータ) (2023-10-25T17:59:32Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models [7.485068491216164]
大規模言語モデル(LLM)は、最近、様々なタスクで顕著な成功を収めた。
重みのみの量子化は有望なアプローチであるが、大振幅のアクティベーションアウトレイアのため、サブ-4ビットの量子化は依然として課題である。
本稿では,各入力チャネル内の量子化グループを生成する簡易かつ効果的な手法である,IC単位の量子化を提案する。
論文 参考訳(メタデータ) (2023-09-27T09:48:31Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
そこで本研究では,現在のPTQ手法のプラグインとして利用できるノルム調整手法を提案する。
本手法は,重量のみの量子化と重みとアクティベーションの連成量子化の両面で有意な改善を示す。
私たちのシンプルで効果的なアプローチは、現実世界のアプリケーションにとってより実用的です。
論文 参考訳(メタデータ) (2023-09-06T06:51:15Z) - FPTQ: Fine-grained Post-Training Quantization for Large Language Models [28.11564378745513]
利用可能なオープンソースLLMのための新しいW4A8ポストトレーニング量子化法を提案する。
我々は,BLOOM,LLaMA,LLaMA-2における最先端のW4A8量子化性能を標準ベンチマークで取得する。
論文 参考訳(メタデータ) (2023-08-30T12:18:18Z) - Outlier Suppression+: Accurate quantization of large language models by
equivalent and optimal shifting and scaling [44.60348333479704]
トランスフォーマー言語モデルの学習後の量子化は、アクティベーションにおける有害なアウトレイアの存在による課題に直面している。
本研究では,非対称性のチャネルワイドシフトと濃度のチャネルワイドスケーリングを含むOutlier Suppression+(OS+)フレームワークを提案する。
等価性を保ちながら,これらの操作を後続モジュールにシームレスに移行可能であることを示す。
論文 参考訳(メタデータ) (2023-04-18T17:34:23Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。