論文の概要: GWQ: Gradient-Aware Weight Quantization for Large Language Models
- arxiv url: http://arxiv.org/abs/2411.00850v1
- Date: Wed, 30 Oct 2024 11:16:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:27.970304
- Title: GWQ: Gradient-Aware Weight Quantization for Large Language Models
- Title(参考訳): GWQ:大規模言語モデルのためのグラディエント・アウェアウェイト量子化
- Authors: Yihua Shao, Siyu Liang, Xiaolin Lin, Zijian Ling, Zixian Zhu, Minxi Yan, Haiyang Liu, Siyu Chen, Ziyang Yan, Yilan Meng, Chenyu Zhang, Haotong Qin, Michele Magno, Yang Yang, Zhen Lei, Yan Wang, Jingcai Guo, Ling Shao, Hao Tang,
- Abstract要約: 勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
- 参考スコア(独自算出の注目度): 61.17678373122165
- License:
- Abstract: Large language models (LLMs) show impressive performance in solving complex languagetasks. However, its large number of parameterspresent significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the weights corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format. GWQ found experimentally that utilizing the sensitive weights in the gradient localization model is more scientific compared to utilizing the sensitive weights in the Hessian matrix localization model. Compared to current quantization methods, GWQ can be applied to multiple language models and achieves lower PPL on the WikiText2 and C4 dataset. In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods.GWQ is also suitable for multimodal model quantization, and the quantized Qwen-VL family model is more accurate than other methods. zero-shot target detection task dataset RefCOCO outperforms the current stat-of-the-arts method SPQR. GWQ achieves 1.2x inference speedup in comparison to the original model, and effectively reduces the inference memory.
- Abstract(参考訳): 大規模言語モデル(LLM)は、複雑な言語タスクの解決において優れたパフォーマンスを示す。
しかし、その多数のパラメータは、エッジデバイスへのモデルのデプロイと適用において重要な課題を示している。
大規模な言語モデルを低ビットに圧縮することで、リソース制約のあるデバイス上で実行することが可能になり、多くの場合、パフォーマンスが低下する。
この問題に対処するために,低ビット量量子化のための最初の量子化手法であるグラデーション・アウェア・ウェイト量子化(GWQ)を提案する。
GWQはFP16精度で上位1%の外れ値に対応する重みを優先的に保持し、残りの非外れ値重みは低ビット形式に格納する。
GWQは、勾配定位モデルにおける感度重みの活用は、ヘッセン行列定位モデルにおける感度重みの活用よりも科学的であることを示した。
現在の量子化法と比較すると、GWQは複数の言語モデルに適用でき、WikiText2およびC4データセット上で低PPLを実現する。
ゼロショットタスクでは、GWQ量子化モデルは、他の量子化手法よりも精度が高く、GWQはマルチモーダルモデル量子化にも適しており、量子化されたQwen-VLファミリーモデルは、他の方法よりも正確である。
ゼロショットターゲット検出タスクデータセット RefCOCOは、現在のstat-of-the-artsメソッドSPQRよりも優れています。
GWQは、元のモデルと比較して1.2倍の推論スピードアップを実現し、推論メモリを効果的に削減する。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - QERA: an Analytical Framework for Quantization Error Reconstruction [12.110441045050223]
重みを極めて低い精度に定量化することへの関心が高まり、結果として生じる誤差を低ランクで高精度なエラー再構成項で相殺する。
量子化と低ランク近似の組み合わせは、アダプタベースのパラメータ効率の微調整法の両方で人気がある。
本稿では,QERA(Quantization Error Reconstruction Analysis)という解析フレームワークを定式化し,その問題に対するクローズドフォームのソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-08T13:37:34Z) - Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization [62.15918574997175]
言語モデルには、平均値が他のチャネルよりも桁違いに高い外れ値チャネルが含まれていることが知られている。
本稿では,QAT(Quantization-Aware Training)とアクティベーション・カルトシス・正規化(Activation Kurtosis regularization)によって,レイヤの入力を正規化する戦略を提案する。
入力と出力の両方を正規化することは、入力量子化の難しさを重みに"移行"するのを防ぐために重要であることを示す。
論文 参考訳(メタデータ) (2024-04-04T17:25:30Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
そこで本研究では,現在のPTQ手法のプラグインとして利用できるノルム調整手法を提案する。
本手法は,重量のみの量子化と重みとアクティベーションの連成量子化の両面で有意な改善を示す。
私たちのシンプルで効果的なアプローチは、現実世界のアプリケーションにとってより実用的です。
論文 参考訳(メタデータ) (2023-09-06T06:51:15Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and
Inference of Large Language Models [15.461748851931588]
outlier-aware weight Quantization (OWQ)メソッドは、低精度表現によって大きな言語モデルのフットプリントを最小化する。
OWQは、量子化に敏感な構造的重みの小さなサブセットを優先順位付けし、それらを高精度に保存し、残りの高密度重みに高度に調整された量子化を適用する。
OWQを用いた3.1ビットモデルは、OPTQによって最適化された4ビットモデルと互換性があることを示した。
論文 参考訳(メタデータ) (2023-06-04T06:33:13Z) - ZeroQuant-V2: Exploring Post-training Quantization in LLMs from
Comprehensive Study to Low Rank Compensation [24.34969722921442]
学習後量子化(PTQ)は、大規模言語モデル(LLM)におけるメモリ消費と計算コストを緩和する有望な手法として登場した。
我々は、PTQが重量のみ、活性化のみ、および重量と活性化の量子化に与える影響を調査し、これらの要因を包括的に分析する。
モデルサイズが最小限に抑えられたモデル品質回復を実現するために,Loll-Rank Compensation (LoRC) という最適化手法を提案する。
論文 参考訳(メタデータ) (2023-03-15T01:27:15Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z) - Learnable Companding Quantization for Accurate Low-bit Neural Networks [3.655021726150368]
ディープニューラルネットワークの量子化は、メモリ消費の削減と推論速度の向上に有効な方法である。
非常に低ビットモデルがフル精度モデルに匹敵する精度を達成することは、まだ困難です。
2,3,4ビットモデルのための新しい非一様量子化手法として学習可能なコンパイル量子化(LCQ)を提案する。
論文 参考訳(メタデータ) (2021-03-12T09:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。