論文の概要: Analyzing Musical Characteristics of National Anthems in Relation to Global Indices
- arxiv url: http://arxiv.org/abs/2404.03606v1
- Date: Thu, 4 Apr 2024 17:25:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 14:02:35.693645
- Title: Analyzing Musical Characteristics of National Anthems in Relation to Global Indices
- Title(参考訳): 国歌の楽譜特性のグローバル指標による分析
- Authors: S M Rakib Hasan, Aakar Dhakal, Ms. Ayesha Siddiqua, Mohammad Mominur Rahman, Md Maidul Islam, Mohammed Arfat Raihan Chowdhury, S M Masfequier Rahman Swapno, SM Nuruzzaman Nobel,
- Abstract要約: 国歌音楽データを分析し、特定の音楽特性が平和、幸福、自殺率、犯罪率などと関連しているかどうかを判定する。
以上の結果から,国歌の楽曲的特徴と,調査対象の指標との間には相関があることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Music plays a huge part in shaping peoples' psychology and behavioral patterns. This paper investigates the connection between national anthems and different global indices with computational music analysis and statistical correlation analysis. We analyze national anthem musical data to determine whether certain musical characteristics are associated with peace, happiness, suicide rate, crime rate, etc. To achieve this, we collect national anthems from 169 countries and use computational music analysis techniques to extract pitch, tempo, beat, and other pertinent audio features. We then compare these musical characteristics with data on different global indices to ascertain whether a significant correlation exists. Our findings indicate that there may be a correlation between the musical characteristics of national anthems and the indices we investigated. The implications of our findings for music psychology and policymakers interested in promoting social well-being are discussed. This paper emphasizes the potential of musical data analysis in social research and offers a novel perspective on the relationship between music and social indices. The source code and data are made open-access for reproducibility and future research endeavors. It can be accessed at http://bit.ly/na_code.
- Abstract(参考訳): 音楽は人々の心理と行動パターンを形成する上で大きな役割を果たす。
本稿では,国歌と異なるグローバル指標の関連性について,計算音楽分析と統計的相関分析を用いて検討する。
国歌音楽データを分析し、特定の音楽特性が平和、幸福、自殺率、犯罪率などと関連しているかどうかを判定する。
これを実現するため、169か国から国歌を収集し、音高、テンポ、ビート、その他の関連する音声特徴を抽出するために計算音楽分析技術を用いる。
次に、これらの音楽特性と異なるグローバル指標のデータを比較し、有意な相関が存在するかどうかを確かめる。
以上の結果から,国歌の楽曲的特徴と,調査対象の指標との間には相関があることが示唆された。
音楽心理学や社会福祉の推進に関心を持つ政策立案者に対して,本研究の意義について考察した。
本稿では,社会研究における音楽データ分析の可能性を強調し,音楽と社会指標の関係について新たな視点を提供する。
ソースコードとデータは、再現性と将来の研究努力のためにオープンアクセスされる。
http://bit.ly/na_code.comからアクセスすることができる。
関連論文リスト
- A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - A Dataset and Baselines for Measuring and Predicting the Music Piece Memorability [16.18336216092687]
音楽の記憶力の測定と予測に重点を置いている。
私たちは、音楽の記憶可能性の予測と分析のためにベースラインを訓練します。
改善の余地はあるものの、限られたデータで音楽の記憶可能性を予測することは可能であることを実証する。
論文 参考訳(メタデータ) (2024-05-21T14:57:04Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Exploring the Emotional Landscape of Music: An Analysis of Valence
Trends and Genre Variations in Spotify Music Data [0.0]
本稿ではSpotifyの音楽データを用いた音楽感情と傾向の複雑な分析を行う。
回帰モデル、時間分析、気分遷移、ジャンル調査を応用し、音楽と感情の関係のパターンを明らかにする。
論文 参考訳(メタデータ) (2023-10-29T15:57:31Z) - Knowledge-based Multimodal Music Similarity [0.0]
本研究は,シンボリックコンテンツとオーディオコンテンツの両方を用いた音楽的類似性の研究に焦点をあてる。
本研究の目的は、音楽の類似性や分類システムのより制御と理解をエンドユーザに提供する、完全に説明可能な、解釈可能なシステムを開発することである。
論文 参考訳(メタデータ) (2023-06-21T13:12:12Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
本研究では,中国社会音楽プラットフォーム上での403万以上のリスナーコメントから,音楽に対する感情応答を測定する手法を開発した。
我々は,聴取者の感情反応を促進する音楽的,歌詞的,文脈的,人口動態的,精神的健康的効果をテストした。
論文 参考訳(メタデータ) (2022-10-17T19:57:46Z) - Modelling Moral Traits with Music Listening Preferences and Demographics [2.3204178451683264]
カナダで実施されているオンライン調査から,音楽ジャンルの嗜好,人口統計,道徳的価値の関連性を検討する。
以上の結果から,人の道徳的価値を予測する上での音楽の重要性が示された(.55-.69 AUROC)。
論文 参考訳(メタデータ) (2021-07-01T10:26:29Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。