論文の概要: A Survey of Foundation Models for Music Understanding
- arxiv url: http://arxiv.org/abs/2409.09601v1
- Date: Sun, 15 Sep 2024 03:34:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 20:07:53.457444
- Title: A Survey of Foundation Models for Music Understanding
- Title(参考訳): 音楽理解のための基礎モデルの検討
- Authors: Wenjun Li, Ying Cai, Ziyang Wu, Wenyi Zhang, Yifan Chen, Rundong Qi, Mengqi Dong, Peigen Chen, Xiao Dong, Fenghao Shi, Lei Guo, Junwei Han, Bao Ge, Tianming Liu, Lin Gan, Tuo Zhang,
- Abstract要約: この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
- 参考スコア(独自算出の注目度): 60.83532699497597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Music is essential in daily life, fulfilling emotional and entertainment needs, and connecting us personally, socially, and culturally. A better understanding of music can enhance our emotions, cognitive skills, and cultural connections. The rapid advancement of artificial intelligence (AI) has introduced new ways to analyze music, aiming to replicate human understanding of music and provide related services. While the traditional models focused on audio features and simple tasks, the recent development of large language models (LLMs) and foundation models (FMs), which excel in various fields by integrating semantic information and demonstrating strong reasoning abilities, could capture complex musical features and patterns, integrate music with language and incorporate rich musical, emotional and psychological knowledge. Therefore, they have the potential in handling complex music understanding tasks from a semantic perspective, producing outputs closer to human perception. This work, to our best knowledge, is one of the early reviews of the intersection of AI techniques and music understanding. We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities. We also discussed their limitations and proposed possible future directions, offering insights for researchers in this field.
- Abstract(参考訳): 音楽は日常生活において不可欠であり、感情とエンターテイメントのニーズを満たし、私たちを個人的に、社会的、文化的に結びつける。
音楽の理解を深めることで、私たちの感情、認知能力、文化的なつながりを高めることができます。
人工知能(AI)の急速な進歩は、音楽の人間の理解を再現し、関連するサービスを提供することを目的として、音楽を分析する新しい方法を導入した。
従来のモデルは音声の特徴や単純なタスクに重点を置いていたが、近年の大規模言語モデル(LLM)や基礎モデル(FM)は、意味情報を統合し、強力な推論能力を示すことによって様々な分野に優れており、複雑な音楽の特徴やパターンを捉え、言語と音楽を統合し、豊かな音楽的、感情的、心理的知識を取り入れている。
そのため、意味的な観点から複雑な音楽理解タスクを処理し、人間の知覚に近いアウトプットを生み出す可能性がある。
この研究は、私たちの知る限り、AI技術と音楽理解の交差に関する初期のレビューの1つです。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
また,これらの限界についても議論し,今後の方向性を示唆し,この分野の研究者に洞察を提供した。
関連論文リスト
- Generating Mixcode Popular Songs with Artificial Intelligence: Concepts, Plans, and Speculations [0.0]
本稿では,人工知能とポピュラー音楽を統合するプロジェクトについて論じる。
プロジェクトの最終的な目標は、ソーシャルトランスフォーメーション、教育、ヘルスケア、感情的な幸福のために音楽を実装する強力なツールを作ることだ。
論文 参考訳(メタデータ) (2024-11-10T10:49:13Z) - Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - Are Words Enough? On the semantic conditioning of affective music
generation [1.534667887016089]
このスコーピングレビューは、感情によって条件付けられた音楽生成の可能性を分析し、議論することを目的としている。
本稿では,ルールベースモデルと機械学習モデルという,自動音楽生成において採用される2つの主要なパラダイムについて概観する。
音楽を通して感情を表現する言葉の限界とあいまいさを克服することは、創造産業に影響を及ぼす可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-11-07T00:19:09Z) - A Survey on Artificial Intelligence for Music Generation: Agents,
Domains and Perspectives [10.349825060515181]
人間がどのように音楽を作曲し、新しいAIシステムがそのようなプロセスを模倣するかを説明する。
AIモデルとアルゴリズムがいかにして音楽を生成するかを理解するために、私たちは、音楽生成プロセスに参加するエージェントを探索、分析、記述する。
論文 参考訳(メタデータ) (2022-10-25T11:54:30Z) - Music Harmony Generation, through Deep Learning and Using a
Multi-Objective Evolutionary Algorithm [0.0]
本稿では,ポリフォニック音楽生成のための遺伝的多目的進化最適化アルゴリズムを提案する。
ゴールの1つは音楽の規則と規則であり、他の2つのゴール、例えば音楽の専門家や普通のリスナーのスコアとともに、最も最適な反応を得るために進化のサイクルに適合する。
その結果,提案手法は,聞き手を引き寄せながら文法に従う調和音とともに,所望のスタイルや長さの難易度と快適さを生み出すことができることがわかった。
論文 参考訳(メタデータ) (2021-02-16T05:05:54Z) - Artificial Musical Intelligence: A Survey [51.477064918121336]
音楽は、機械学習と人工知能研究の領域としてますます広まりつつある。
この記事では、音楽知能の定義を提供し、その構成成分の分類を導入し、その追求に耐えうる幅広いAI手法を調査します。
論文 参考訳(メタデータ) (2020-06-17T04:46:32Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。