論文の概要: A Tutorial on Gaussian Process Learning-based Model Predictive Control
- arxiv url: http://arxiv.org/abs/2404.03689v1
- Date: Tue, 2 Apr 2024 03:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 17:55:13.452912
- Title: A Tutorial on Gaussian Process Learning-based Model Predictive Control
- Title(参考訳): ガウス過程学習に基づくモデル予測制御に関する研究
- Authors: Jie Wang, Youmin Zhang,
- Abstract要約: 本チュートリアルでは,ガウス過程(GP)とモデル予測制御(MPC)を統合し,複雑なシステムにおける制御の強化を図る。
このチュートリアルの中心的な貢献は、文学におけるGP-MPCの詳細な体系的な数学的定式化である。
挑戦的な地形における移動ロボットの経路追従や混合車両小隊などのロボット制御の実践的応用について論じる。
- 参考スコア(独自算出の注目度): 6.868436894461309
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This tutorial provides a systematic introduction to Gaussian process learning-based model predictive control (GP-MPC), an advanced approach integrating Gaussian process (GP) with model predictive control (MPC) for enhanced control in complex systems. It begins with GP regression fundamentals, illustrating how it enriches MPC with enhanced predictive accuracy and robust handling of uncertainties. A central contribution of this tutorial is the first detailed, systematic mathematical formulation of GP-MPC in literature, focusing on deriving the approximation of means and variances propagation for GP multi-step predictions. Practical applications in robotics control, such as path-following for mobile robots in challenging terrains and mixed-vehicle platooning, are discussed to demonstrate the real-world effectiveness and adaptability of GP-MPC. This tutorial aims to make GP-MPC accessible to researchers and practitioners, enriching the learning-based control field with in-depth theoretical and practical insights and fostering further innovations in complex system control.
- Abstract(参考訳): 本チュートリアルでは,ガウス的プロセス学習に基づくモデル予測制御(GP-MPC)の体系的導入について述べる。
GP回帰の基本から始まり、予測精度の向上と不確実性の堅牢なハンドリングでMPCをいかに豊かにするかを説明する。
このチュートリアルの中心的な貢献は、GP-MPCの文献における最初の詳細な体系的な数学的定式化であり、GP多段階予測のための手段の近似と分散伝播の導出に焦点を当てている。
GP-MPCの現実的有効性と適応性を示すために, 挑戦的な地形における移動ロボットの経路追従や混合車両小隊などのロボット制御の実践的応用について論じる。
本チュートリアルは,GP-MPCを研究者や実践者に利用しやすくし,より深い理論的・実践的な洞察で学習ベースの制御分野を充実させ,複雑なシステム制御のさらなる革新を促進することを目的とする。
関連論文リスト
- Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework [35.79393879150088]
本稿では,制約満足度を高い確率で保証する頑健なGP-MPCの定式化を提案する。
提案手法は,既存手法とリアルタイム実現可能な時間に比較して,改良された到達可能集合近似を強調した。
論文 参考訳(メタデータ) (2024-09-13T08:15:20Z) - Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
そこで本研究では,モンテカルロのドロップアウト手法を学習システムモデルに応用した,サンプリングベースアンサンブルニューラルMPCアルゴリズムを提案する。
この手法は一般に複雑な力学を持つ不確実なシステムを対象としており、第一原理から派生したモデルは推論が難しい。
論文 参考訳(メタデータ) (2024-06-04T17:15:25Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Gaussian Processes to speed up MCMC with automatic
exploratory-exploitation effect [1.0742675209112622]
確率モデルをサンプリングするための2段階のメトロポリス・ハスティングスアルゴリズムを提案する。
このアプローチの主な特徴は、サンプリング中にターゲットの分布をスクラッチから学習する能力である。
論文 参考訳(メタデータ) (2021-09-28T17:43:25Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - Hybrid Gaussian Process Modeling Applied to Economic Stochastic Model
Predictive Control of Batch Processes [0.0]
植物モデルはしばしば第一原理から決定され、モデルの一部が物理的法則のみを用いて導出することが困難である。
本稿ではGPを用いて、第一原理を用いて記述が難しい動的システムのパーツをモデル化する。
この不確実性を制御アルゴリズムで考慮し、制約違反や性能劣化を防止することが不可欠である。
論文 参考訳(メタデータ) (2021-08-14T00:01:42Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。