SpikeExplorer: hardware-oriented Design Space Exploration for Spiking Neural Networks on FPGA
- URL: http://arxiv.org/abs/2404.03714v1
- Date: Thu, 4 Apr 2024 17:53:08 GMT
- Title: SpikeExplorer: hardware-oriented Design Space Exploration for Spiking Neural Networks on FPGA
- Authors: Dario Padovano, Alessio Carpegna, Alessandro Savino, Stefano Di Carlo,
- Abstract summary: SpikExplorer is a Python tool for hardware-oriented Automatic Design Space Exploration.
It searches the optimal network architecture, neuron model, and internal and training parameters.
It reaches 95.8% accuracy on the MNIST dataset, with a power consumption of 180mW/image and a latency of 0.12 ms/image.
- Score: 42.170149806080204
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of today's main concerns is to bring Artificial Intelligence power to embedded systems for edge applications. The hardware resources and power consumption required by state-of-the-art models are incompatible with the constrained environments observed in edge systems, such as IoT nodes and wearable devices. Spiking Neural Networks (SNNs) can represent a solution in this sense: inspired by neuroscience, they reach unparalleled power and resource efficiency when run on dedicated hardware accelerators. However, when designing such accelerators, the amount of choices that can be taken is huge. This paper presents SpikExplorer, a modular and flexible Python tool for hardware-oriented Automatic Design Space Exploration to automate the configuration of FPGA accelerators for SNNs. Using Bayesian optimizations, SpikerExplorer enables hardware-centric multi-objective optimization, supporting factors such as accuracy, area, latency, power, and various combinations during the exploration process. The tool searches the optimal network architecture, neuron model, and internal and training parameters, trying to reach the desired constraints imposed by the user. It allows for a straightforward network configuration, providing the full set of explored points for the user to pick the trade-off that best fits the needs. The potential of SpikExplorer is showcased using three benchmark datasets. It reaches 95.8% accuracy on the MNIST dataset, with a power consumption of 180mW/image and a latency of 0.12 ms/image, making it a powerful tool for automatically optimizing SNNs.
Related papers
- Embedded event based object detection with spiking neural network [0.18641315013048293]
This research introduces an embedded neuromorphic testbench that utilizes the SPiking Low-power Event-based ArchiTecture accelerator.
We use this testbench to load a state-of-the-art SNN solution, estimate the performance loss associated with deploying the network on dedicated hardware, and run real-world event-based OD on neuromorphic hardware.
arXiv Detail & Related papers (2024-06-25T15:02:01Z) - Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+ is a framework for generating efficient, low-power, and low-area customized Spiking Neural Networks (SNN) accelerators on FPGA for inference at the edge.
Spiker+ is tested on two benchmark datasets, the MNIST and the Spiking Heidelberg Digits (SHD)
arXiv Detail & Related papers (2024-01-02T10:42:42Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks
with Emerging Neural Encoding on FPGAs [6.047137174639418]
End-to-end framework E3NE automates the generation of efficient SNN inference logic for FPGAs.
E3NE uses less than 50% of hardware resources and 20% less power, while reducing the latency by an order of magnitude.
arXiv Detail & Related papers (2021-11-19T04:01:19Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.