Dynamical heterogeneity and large deviations in the open quantum East glass model from tensor networks
- URL: http://arxiv.org/abs/2404.03750v3
- Date: Thu, 18 Jul 2024 11:42:56 GMT
- Title: Dynamical heterogeneity and large deviations in the open quantum East glass model from tensor networks
- Authors: Luke Causer, Mari Carmen BaƱuls, Juan P. Garrahan,
- Abstract summary: We study the non-equilibrium dynamics of the dissipative quantum East model via numerical tensor networks.
We use matrix product states to represent evolution under quantum-jump unravellings for sizes beyond those accessible to exact diagonalisation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the non-equilibrium dynamics of the dissipative quantum East model via numerical tensor networks. We use matrix product states to represent evolution under quantum-jump unravellings for sizes beyond those accessible to exact diagonalisation. This allows us to demonstrate that dynamical heterogeneity accompanies slow relaxation, in analogy with what is seen in classical glassy systems. Furthermore, using variational matrix product operators we: (i) compute the spectral gap of the Lindbladian, and show that glassiness is enhanced in the presence of weak quantum fluctuations compared to the pure classical case, and (ii) obtain the dynamical large deviations by calculating the leading eigenvector of the tilted Lindbladian, and find clear evidence for a first-order active-inactive dynamical phase transition. We also show how to directly sample the rare quantum trajectories associated to the large deviations.
Related papers
- Quantum Quench Dynamics of Geometrically Frustrated Ising Models [0.20971479389679332]
We study the triangular antiferromagnet and Villain model in a transverse field.
Our results demonstrate the ability of quantum annealers to simulate coherent quantum dynamics.
arXiv Detail & Related papers (2024-02-29T19:39:14Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Linear-scale simulations of quench dynamics [2.7615495205203318]
We develop a linear-scale computational simulation technique for the non-equilibrium dynamics of quantum quench systems.
An expansion-based method allows us to efficiently compute the Loschmidt echo for infinitely large systems.
We observe wave vector-independent dynamical phase transitions in self-dual localization models.
arXiv Detail & Related papers (2023-11-16T04:18:32Z) - Scale-invariant critical dynamics at eigenstate transitions [0.0]
We study features of scale-invariant dynamics of survival probability and SFF at criticality.
We show that, in contrast to the quantum chaotic regime, the quantum dynamics at criticality do not only exhibit scale invariance at late times.
arXiv Detail & Related papers (2023-09-27T20:35:58Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Hilbert space fragmentation and slow dynamics in particle-conserving
quantum East models [0.0]
We introduce a hitherto unexplored family of kinetically constrained models featuring a conserved particle number.
We reproduce the logarithmic dynamics observed in the quantum case using a classically simulable cellular automaton.
arXiv Detail & Related papers (2022-10-27T16:50:27Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Experimental Quantum Simulation of Dynamic Localization on Curved
Photonic Lattices [18.469890724212902]
We fabricate one-dimensional and hexagonal two-dimensional arrays, both with sinusoidal curvature.
We successfully observe the suppressed single-photon evolution patterns, and for the first time measure the variances to study their transport properties.
We demonstrate a useful quantum simulation of dynamic localization for studying their anisotropic transport properties, and a promising application of dynamic localization as a building block for quantum information processing in integrated photonics.
arXiv Detail & Related papers (2022-05-26T09:03:42Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - Characterizing the dynamical phase diagram of the Dicke model via
classical and quantum probes [0.0]
We study the dynamical phase diagram of the Dicke model in both classical and quantum limits.
Our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact quantum dynamics.
Our predictions can be verified in current quantum simulators of the Dicke model including arrays of trapped ions.
arXiv Detail & Related papers (2021-02-03T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.